目标检测之Softer-NMS

一、目标检测之Softer-NMS

Bounding Box Regression with Uncertainty for Accurate Object Detection

二、Softer-NMS算法

1、论文动机

目前NMS会出问题的情况:

1)所有的候选包围框都不够精确(这时候该选择哪一个?或者有没有可能综合这些候选框的信息提高精度?);

2)拥有高的分类分数的候选包围框不精确(如何更有效地评价候选框的定位精度?)

如下图:
在这里插入图片描述
图中(a)展示了2个均在某些坐标不精确的候选包围框,(b)展示了定位精度高的候选框分类分数较低。

以上检测失败的例子都表明,定位置信度并不是与分类置信度强相关(事实上好的分类器应该对定位信息不敏感)。

2、论文算法思想

  • 首先假设预测的bounding box的是高斯分布:
    在这里插入图片描述
  • ground truth bounding box是狄拉克delta分布(既标准方差为0的高斯分布极限):
    在这里插入图片描述
    上个式子里面的delta分布是当高斯分布的σ趋于0时的极限分布,大概就是这样:
    在这里插入图片描述
    当σ越小,曲线越瘦高,当σ非常小的时候,几乎是一条竖直的线,同时σ越小,表示越确定,因此1−σ可以作为置信度的。

网络架构:
在这里插入图片描述

KL 散度用来衡量两个概率分布的非对称性度量,KL散度越接近0代表两个概率分布越相似。

论文提出的KL loss,即为最小化Bounding box regression loss,即Bounding box的高斯分布和ground truth的狄拉克delta分布的KL散度。直观上解释,KL Loss使得Bounding box预测呈高斯分布,且与ground truth相近。而将包围框预测的标准差看作置信度

在这里插入图片描述
我们估计值的高斯分布,对应蓝色和灰色的曲线。橙色的曲线是ground-truth对应的狄拉克函数。当预测bbox位置没被估计准确,我们期望预测结果有更大的方差,这样Lreg会比较低(蓝色)。

使用KL loss进行回归:
在这里插入图片描述
最终推导后损失函数:
在这里插入图片描述
为了避免梯度爆炸,我们的网络实际中预测的是α=log(σ²)α=log(σ²),而不是σ;

var voting(方差投票)

得到上述置信度,即可以在Soft NMS后进一步改进,将大于一定重叠度阈值Nt的候选包围框根据置信度加权平均。(因为在训练的时候寻求包围框预测的方差小,所以这一步加权平均后不会出现框出来“四不像”的情况)
在这里插入图片描述
计算过程如下:
在这里插入图片描述

结果

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值