论文
Question Generation for Question Answering
Nan Duan, Microsoft Research Asia, 2017
原文链接
这篇是从长文章中利用两种方式CNN和RNN来生成高质量的问题,并利用生成的这些问题来进一步提高QA的表现,这篇和下一篇是一个作者的文章。
数据集:SQuAD, MS MARCO, and WikiQA
结构:
整个QG结构分为四个部分,Question Pattern Mining,Question Pattern Prediction,Question Topic Selection,Question Ranking
Question Pattern Mining
将问句输入YahooAnswers获得一系列相关的问题,这些问题构成了一个question cluster。在这个cluster中,n gram出现的频率越高越有可能是topic word
Question Pattern Prediction
给定一篇文章,利用一些关键短语,eg co-founded by -> who found # ?,预测相关的question pattern有哪些。训练数据格式为 <A,Qp,Qt> < A , Q p , Q t > ,预测时输入为 <S,Qp> < S , Q p > 。
A是answer, Qp Q p 是question pattern,