论文阅读 QA与QG联合学习

本文介绍了三篇关于问答系统(QA)和问题生成(QG)的论文,研究如何通过联合学习来提高两者的效果。论文利用CNN和RNN生成高质量问题以改进QA性能,提出了将QG和QA视为相互促进的双任务模型,并探索了将QA和QG视为单一生成任务的联合模型。实验表明,这些方法能够显著提升QA的准确性和效率。
摘要由CSDN通过智能技术生成

论文


Question Generation for Question Answering

Nan Duan, Microsoft Research Asia, 2017
原文链接

这篇是从长文章中利用两种方式CNN和RNN来生成高质量的问题,并利用生成的这些问题来进一步提高QA的表现,这篇和下一篇是一个作者的文章。

数据集:SQuAD, MS MARCO, and WikiQA

结构
整个QG结构分为四个部分,Question Pattern Mining,Question Pattern Prediction,Question Topic Selection,Question Ranking

  • Question Pattern Mining
    将问句输入YahooAnswers获得一系列相关的问题,这些问题构成了一个question cluster。在这个cluster中,n gram出现的频率越高越有可能是topic word
    Question Pattern Mining

  • Question Pattern Prediction
    给定一篇文章,利用一些关键短语,eg co-founded by -> who found # ?,预测相关的question pattern有哪些。训练数据格式为 <A,Qp,Qt> < A , Q p , Q t > ,预测时输入为 <S,Qp> < S , Q p >
    A是answer, Qp Q p 是question pattern,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值