运行caffe自带的mnist实例教程

1、先进入caffe文件目录,(指令:cd ./caffe),再用data/mnist下的get_mnist.sh下載MNIST数据集,代码如下:

sudo sh ./data/mnist/get_mnist.sh

2、转换格式,代码如下:

 ./examples/mnist/create_mnist.sh

完成后在examples/mnist生成了两个目录:mnist_test_lmdb和mnist_train_lmdb

每个目录下有两个文件:data.mdb和lock.mdb

网络结构定义在./examples/mnist/lenet_train_test.prototxt中。

训练参数配置在./examples/mnist/lenet_solver.prototxt中。

如果电脑有GPU,则不需要修改配置文件;如果没有GPU则需要修改lenet_solver.prototxt,在训练之前需要修改

./examples/mnist/lenet_solver.prototxt最后的(solver_mode: GPU)修改为:solver_mode: CPU

这样保证整个训练过程在CPU上进行。

3、训练超参数,有两种方式:

(1)通过命令行执行训练,代码如下:

cd ./caffe

./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt

(2)将以上训练的命令行代码写成训练脚本并命名为train_lenet.sh,放到mnist目录下。运行train_lenet.sh脚本进行训练。

 cd caffe

./examples/mnist/train_lenet.sh

最终训练的模型保存在caffe/examples/mnist/lenet_iter_10000.caffemodel文件中,训练状态保存在caffe/examples/mnist/lenet_iter_10000.solverstate文件中。

5、用训练好的模型对数据进行预测。

利用训练好的Lenet-5模型权值文件(examples/mnist/lenet_iter_10000.caffemodel)可以对测试数据集(或外部测试集)进行预测,代码如下:(注意caffe.bin ,prototxt ,caffemodel 等的路径一定要根据自己的写对:)

cd  ./caffe

./build/tools/caffe.bin test \  

-model=examples/mnist/lenet_train_test.prototxt \

-weights=examples/mnist/lenet_iter_10000.caffemodel \

-iterations=100 

\表示回车,也可以不要它,直接将这四行代码写成一行代码,注意caffe.bin ,prototxt ,caffemodel 等的路径一定要根据自己的写对:

./build/tools/caffe.bin test -model=examples/mnist/lenet_train_test.prototxt -weights=examples/mnist/lenet_iter_5000.caffemodel -iterations=100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值