一、前言
脑机接口(Brain-Computer Interface,BCI)是人脑与计算机或其他电子设备之间建立的直接的交流和控制通道,人可以直接通过脑表达想法来操控设备,而不需要语言或动作。可帮助身体严重残疾的患者与外界交流的能力,提高患者的生活质量。脑机接口技术是涉及神经科学、信号检测、信号处理、模式识别等多学科的交叉技术。
二、BCI系统及其工作原理
2.1、BCI的原理及概念
神经科学研究表明,在大脑产生动作意识之后和动作执行之前,或者受试主体受到外界刺激之后,其神经系统的电活动会发生相应的改变。神经电活动的这种变化可以通过一定的手段检测出来,并作为动作即将发生的特征信号。通过对这些特征信号进行分类识别,分辨出引发脑电变化的动作意图,再用计算机语言进行编程,把人的思维活动转变成命令信号驱动外部设备,实现在没有肌肉和外围神经直接参与的情况下,人脑对外部环境的控制。这即为脑机接口的原理。BCI完全不依赖肌肉和外围神经的参与,直接实现脑和计算机的通信。这对完全没有活动能力的患者(如脑中风,肌萎缩性(脊髓)侧索硬化,脑瘫等)的辅助治疗和语言功能、行为能力的恢复,对特殊环境中外部设备的控制,甚至对娱乐方式的改进都具有非常重要的意义。
2.2、脑机接口(BCI)系统的基本结构
从原理上讲,BCI系统一般由输入、输出和信号处理及转换等功能环节组成。
1、输入环节的功能是检测包含有某种特性的脑电活动特征信号,以及对这种特征用参数加以描述。
2、信号处理的作用是对源信号进行处理分析,把连续的模拟信号转换成用某些特征参数(如幅值、自回归模型的系数等)表示的数字信号,以便于计算机的读取和处理,并对这些特征信号进行识别分类,确定其对应的意念活动。
3、信号转换是根据信号分析、分类之后得到的特征信号产生驱动或操作命令,对输出装置进行操作,或直接输出表示患者意图的字母或单词,达到与外界交流的目的。作为连接输入和输出的中问环节,信号分析与转换是BCI系统的重要组成
部分。在训练强度不变的情况下,改进信号分析与转换的算法,可以提高分类的准确性,以优化BCI系统的控制性能。
4、BCI系统的输出装置包括指针运动、字符选择、神经假体的运动以及对其他设备的控制等。
BCI的结构示意图:
2.3、BCI的分类
根据输入信号的性质:使用自发脑电信号的BCI系统和使用诱发脑电信号的BCI系统。
根据信号检测方式:电极内置式和电极外置式。
电极内置式信号检测方法使电极直接和大脑皮层接触或进入大脑皮层,测量的信号噪声小、损失低,但由于涉及外科手术,操作复杂,需要具有专业技术的操作人员,而且容易感染。电极外置式信号检测方法,操作简单,安全,有利于BCI系统的推广,但由于电极距离信号源较远,噪声较大、损失较高。
三、BCI的关键技术
BCI系统由信号的产生、处理、转换、输出以及开关和时钟等单元组成。在BCI技术的发展中,信号分析和转换算法是其最为重要的研究内容。
3.1、源信号的获取
BCI源信号的获取过程包括信号的产生、检测(电极记录)、信号放大、去噪和数字化处理等。人类大脑能够产生多种信号,包括电的、磁的、化学的以及对大脑活动的机械反应等各种形式。在BCI技术实施中,应该从实际应用出发,首先确定采用的特征信号形式,并考虑用何种方法产生特征信号,然后选择相应的检测方法获取信号并进行相应的后续处理。
3.1.1、信号的产生
根据要获取的信号的特征和性质,采取相应的产生特征信号的方法。信号产生方式包括:
(1)利用视觉诱发电位(Visual Evoked Po时ltial,VEP):在显示装置上显示多个选项,使用者注视希望选择的一项,通过对显示方式进行处理,可以使人在注视不同选项时产生不同的脑电信号。通过不断的完善,这种方法有望应用于临床。
(2)利用P300诱发电位:P300电位是事件相关电位(Event Rehted Pomntial,ERP)的一种,其峰值大约出现在相关事件发生后的300ms。理论研究表明,相关事件出现的概率越小,所引起的P300电位越显著,把各备选目标用矩阵中的元素表示,让这些元素以不同的频率闪烁,刺激人的视觉,产生相应的P300电位。但这种信号诱发方法,极易使患者产生疲劳,影响检测结果.
(3)利用事件相关去同步方法:事件相关去同步(Event
RehtedDesynchronizafion,ERD)也是事件相关电位ERP的一种。
(4)模拟虚拟环境:这种方法是让受试者想象进行模拟家电控制的各种操作,诱发产生能够作为特征信号的P300电位。实验结果表明,受试者在面对虚拟现实时产生的特征信号与观察显示器上显示的内容时产生的特征信号相比,效果相差无几,但前者对受试者的要求宽松的多,所以受试者更倾向于使用这种方法。
(5)自主控制脑电:这种信号产生策略是寻找一种有效的训练方法,训练患者学会控制自己的脑电信号。这种思路建立在操作性条件反射的基础上,认为人可以通过
生物反馈来学习控制脑电信号的某些成分。也就是说,在没有任何外界刺激的情况下,让受试者通过自己的意识使脑电发生变化从而获得特征信号。
3.1.2、信号的检测
电极内置式EEG检测中,把Ag-AgCI电极序列植入患者大脑皮层内,长时间对单神经元或神经元集的电活动进行记录,这种方法可以直接检测到神经元的电活动,具有脑电信号特征性强、信噪比高、后继处理简单等优点,但需要有专业的医生进行外科手术,有一定的危险性,而且存在植入后的心理与伦理问题,因此这种方法目前只是用于动物试验。
电极外置式BCI系统只需将电极帽戴在患者或受试者的头上,不需要专业性的指导和帮助,其检测方法简单,操作容易,但由于电极距离神经元较远,得到的信号噪声大、质量差,将加重后继信号处理的负担。电极外置式是实际应用较多的一种信号检测方法。
3.2、信号的处理方法
BCI系统中的信号处理包括信号预处理、特征提取、识别分类等过程。其中特征提
取和识别分类是BCI信号处理最为关键的环节。
3.2.1、BCI中的特征提取方法
特征提取就是以特征信号作为源信号,确定各种参数并以此为向量组成表征信号特征的特征向量。特征参数包括时域信号(如幅值)和频域信号(如频率)两大类,相应的特征提取方法也分为时域法、频域法和时一频域方法。
(1)事件相关电位(ERP)是诱发电位的一种,采用ERP的幅值特性作为特征信号的特征提取方法属于时域信号处理方法,如P300电位,其本身就是以信号产生的时间来定义的。根据事件发生与相关电位产生之间的时间差以及诱发电位的幅值可以判断诱发信号产生的诱发事件的种类。
(2)μ波和β波是根据它们发生的频率来区分的,据此可以进行基于频率特性的信号处理。属于典型的频域特征提取方法,该方法先对得到的多通道EEG信号进行预处理,确定合理的参考点,然后用两个时间域的滤波器进行滤波,分别得到ERP(Evoked Response po-termal)信号和事件相关电位.滤波器的权值按照Buaerworth近似方法进行设计。
(3)小波变换是一种时频信号处理方法,在缺乏先验知识的条件下,小波变换能有效检测出脑电信号中短时、低能量的瞬态脉冲,其最大的优点时采用可变的时频窗口去分析信号的不同频率成份。
(4)特征提取还有一些其它的方法,如:用自回归(AR)模型进行脑电信号的特征提取,AR的系数ak就是线性回归模型的参数,也是代表信号特征的特征信号,改变这些系数,可以得到不同的特征信号。
(5)独立成分分析(ICA)。这是一种多维统计分析方法,与脑电时、频分析方法有着本质的不同。多维统计分析方法的特点是能同时处理多道脑电信号,因此有利于揭示和增强脑电信号中的隐含特征,在脑电消噪和特征提取等方面具有独特的效果。
3.2.2、特征信号的分类识别
特征信号分类是基于脑电信号根据不同的运动或意识能使脑电活动产生不同响应的
特性,确定运动或意识的类型与特征信号之间的关系。信号分类结果的好坏取决于两个方面的因素:一是要进行分类的特征信号是否具有明显的特征,即特征信号的性质;二是分类方法是否有效。
几种具有代表性的BCI特征信号分类综述如下:
(1)人工神经网络(Artifical neural network,ANN):人工神经网络是BCI系统应用最多的分类器。由于其应用简单,参数选择方便,分类结果准确性较高,被广泛地应用于脑电信号的分类。需要指出的是,应用传统的多层感知器进行信号分类识别,需要确定合适的隐含层神经元数目,在神经网络理论中,隐层神经元数目的确定,目前还没有很好的方法。
(2)贝叶斯一卡尔曼滤波:这是一种经验估值方法,它能把EEG信号转变成相应的感知状态的概率,因此允许不同状态之间以及一系列训练产生的EEG之间的衔接存在非平稳性。
(3)线性判别分析(Linear Diseriminant Analysis,LDA): 在LDA中,先为每一类建立概率密度方程式模型,输入新的数据,计算每一类产生的概率,概率值最大的点所对应的类就是输入数据的类别。
(4)遗传算法(Genetic Ak,orithm,GA):用遗传算法对特征信号进行分类时,要从检测到的脑电信号中提取出大量的特征信号(包括有用的特征信号和伪特征信号),然后通过遗传算法去除伪特征信号,保留有用的特征信号作为驱动信号。这种算法的特点是要对特征信号进行大量的分析运算,从中找出各种特征参数,然后从中选取最优的部分,算法的运算量比较大。
四、BCI的评价标准
由于不同BCI系统的输入、输出、转换算法等存在很大的差异,因此,要做到对不同的BCI系统进行客观的科学评价是比较困难的。寻求一种有效的、合理的、实用的评价方法作为BCI系统性能评定的标准,是BCI发展中不可缺少的重要环节。
通信系统普遍采用的一种性能评价标准是波特率,即单位时间内的信息传输量。在BCI系统中,波特率既和速度有关,又和准确度有关,同时也和操作的复杂程度有关。以信息传输率为标准来评价BCI的性能是比较客观和公正的,也许能够被大多数研究者所接受,但由于BCI的应用和对其性能要求的千差万别,要应用统一的、适合于各种BCI系统的标准进行评估,并不是一件容易的事情,还要对其作进一步的研
究。
五、BCI的应用
目前,对BCI应用的研究主要集中在以下几个方面:
(1)交流功能:这类研究的目的是提高语言功能丧失患者与外界的交流能力。
(2)环境控制:目前,对BCI环境控制的研究主要是基于虚拟现实技术。虚拟现实具有相对安全和目标可移动的特点,它能为训练和调整神经系统活动提供一个安全可靠的环境。受试者大脑发出操作命令,这种命令不是由肌肉和外围神经传出并执行,而是由BCI系统经过检测、分析和识别相应的脑电信号,确定要进行的操作,然后由输出装备对目标进行控制。
(3)运动功能恢复:由BCI系统完成脑电信号的检测和分类识别过程,然后把命令输出给神经假体,完成已经失去功能的外围神经应有的功能,或者把命令信号输出给轮椅上的命令接受系统,完成运动、行走等功能,使四肢完全丧失功能的患者能够在无人照看的情况下自己进行一些简单的活动,或进行功能性的辅助训练。
(4)在其他领域的应用:从理论上讲,只要有神经电参与的通信系统,都可以应用BCI技术,如适用于残疾人的无人驾驶汽车,就是把操作过程中脑电信号的一系列变化,由BCI系统实时的转换成操作命令,实现无人直接驾驶的目的。
六、BCI存在的问题
由于对BCI的研究起步较晚,技术本身比较复杂,涉及的内容和相关的领域又比较多,因此,无论是BCI技术本身,还是对它的应用研究,目前都还处于探索阶段。要使BCI技术走出实验室应用于实践,还有许多问题有待解决。
(1)信号处理和信息转换速度有待进一步提高:目前,BCI的最大信息转换速度可以达到68 bits/min,但这与实时控制的要求相差甚远。改进信息处理方法,从原始信号中提取所需特征的精确信号,在BCI技术中占有相当重要的地位。源信号提取精度的提高,有利于信号的分类处理和BCI系统速度与精度的提高。信号转换速度的提高是改进信号处理方法、信号转换算法、患者训练方法等因素的综合结果,依赖于神经学、检测技术、计算机技术、计算方法等多种学科的共同研究成果。
(2)准确度有待进一步提高:目前处于实验室研究阶段的BCI系统的判断正确率虽然优于随意猜测的正确率,但离实际应用的需要还有距离,BCI的特征信号提取和分类技术还不能达到完全正确地反映患者思维活动的要求.准确度是各种因素综合影响的结果。对受试者的训练程度、信号的分析处理方法、分类识别结果的准确性等因素,都将对输出的准确性产生影响;受试者个人的偶然因素,如情绪、疲劳状态、注意力集中程度、不同个体对各种刺激反应的差异等也影响着BCI系统的准确性。另一方面,信号处理和信息转换速度的提高与准确度的提高是矛盾的,实际应用只能是两者的折中处理。
(3)脑电检测技术与实用性的要求还有差距:在脑电检测方面,究竟需要什么样的信号,相应地应该采取什么样的检测手段和处理方法,目前还没有定论。目前的脑电检测技术,无论是内置式电极还是非内置式电极或电极帽,仅适合于实验室研究应用,而且需要别人帮助才能完成,而实际的BCI应用系统需要在无人帮助的情况下,使患者能够独立控制外部环境,实现功能缺失患者与外界的交流。要使BCI技术走出实验室,真正的满足功能缺失患者的需要,在脑电检测技术方面还要进行大量的研究工作。
(4)应用领域的开发:目前BCI技术的研究仍处于理论和实验室阶段,还没有大规模的应用于实践。随着BCI技术的不断发展和完善,需要开发新的应用领域,研究如何把各项技术和不同的应用领域相互结合,开发实用的、综合的BCI应用系统,将是BCI技术发展的一个必然趋势。
七、总结
BCI是一种多学科交叉的新兴技术,它涉及神经科学、信号检测、信号处理、模式识别等多种学科领域。BCI技术的研究具有重要的理论意义和广阔的应用前景。由于BCI技术的发展起步较晚,相应的理论和算法很不成熟,对其应用的研究很不完善,有待于更多的科技工作者致力于这一领域的研究工作。随着技术的不断完善和成熟,BCI将会逐步地应用于现实,并为仿生学开辟新的应用领域。