cvWatershed例子:
- #include<cv.h>
- #include<highgui.h>
- #include<iostream>
- using namespace std;
- IplImage* marker_mask = 0;
- IplImage* markers = 0;
- IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
- CvPoint prev_pt = {-1,-1};
- void on_mouse( int event, int x, int y, int flags, void* param )//opencv 会自动给函数传入合适的值
- {
- if( !img )
- return;
- if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
- prev_pt = cvPoint(-1,-1);
- else if( event == CV_EVENT_LBUTTONDOWN )
- prev_pt = cvPoint(x,y);
- else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
- {
- CvPoint pt = cvPoint(x,y);
- if( prev_pt.x < 0 )
- prev_pt = pt;
- cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );//CvScalar 成员:double val[4] RGBA值A=alpha
- cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
- prev_pt = pt;
- cvShowImage( "image", img);
- }
- }
- int main( int argc, char** argv )
- {
- char* filename = argc >= 2 ? argv[1] : (char*)"fruits.jpg";
- CvMemStorage* storage = cvCreateMemStorage(0);
- CvRNG rng = cvRNG(-1);
- if( (img0 = cvLoadImage(filename,1)) == 0 )
- return 0;
- printf( "Hot keys: \n"
- "\tESC - quit the program\n"
- "\tr - restore the original image\n"
- "\tw or SPACE - run watershed algorithm\n"
- "\t\t(before running it, roughly mark the areas on the image)\n"
- "\t (before that, roughly outline several markers on the image)\n" );
- cvNamedWindow( "image", 1 );
- cvNamedWindow( "watershed transform", 1 );
- img = cvCloneImage( img0 );
- img_gray = cvCloneImage( img0 );
- wshed = cvCloneImage( img0 );
- marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
- markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
- cvCvtColor( img, marker_mask, CV_BGR2GRAY );
- cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR );//这两句只用将RGB转成3通道的灰度图即R=G=B,用来显示用
- cvZero( marker_mask );
- cvZero( wshed );
- cvShowImage( "image", img );
- cvShowImage( "watershed transform", wshed );
- cvSetMouseCallback( "image", on_mouse, 0 );
- for(;;)
- {
- int c = cvWaitKey(0);
- if( (char)c == 27 )
- break;
- if( (char)c == 'r' )
- {
- cvZero( marker_mask );
- cvCopy( img0, img );//cvCopy()也可以这样用,不影响原img0图像,也随时更新
- cvShowImage( "image", img );
- }
- if( (char)c == 'w' || (char)c == ' ' )
- {
- CvSeq* contours = 0;
- CvMat* color_tab = 0;
- int i, j, comp_count = 0;
- //下面选将标记的图像取得其轮廓, 将每种轮廓用不同的整数表示
- //不同的整数使用分水岭算法时,就成为不同的种子点
- //算法本来就是以各个不同的种子点为中心扩张
- cvClearMemStorage(storage);
- cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
- CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
- cvZero( markers );
- for( ; contours != 0; contours = contours->h_next, comp_count++ )
- {
- cvDrawContours(markers, contours, cvScalarAll(comp_count+1),
- cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
- }
- //cvShowImage("image",markers);
- if( comp_count == 0 )
- continue;
- color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );//创建随机颜色列表
- for( i = 0; i < comp_count; i++ ) //不同的整数标记
- {
- uchar* ptr = color_tab->data.ptr + i*3;
- ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
- ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
- ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
- }
- {
- double t = (double)cvGetTickCount();
- cvWatershed( img0, markers );
- cvSave("img0.xml",markers);
- t = (double)cvGetTickCount() - t;
- printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
- }
- // paint the watershed image
- for( i = 0; i < markers->height; i++ )
- for( j = 0; j < markers->width; j++ )
- {
- int idx = CV_IMAGE_ELEM( markers, int, i, j );//markers的数据类型为IPL_DEPTH_32S
- uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );//BGR三个通道的数是一起的,故要j*3
- if( idx == -1 ) //输出时若为-1,表示各个部分的边界
- dst[0] = dst[1] = dst[2] = (uchar)255;
- else if( idx <= 0 || idx > comp_count ) //异常情况
- dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
- else //正常情况
- {
- uchar* ptr = color_tab->data.ptr + (idx-1)*3;
- dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
- }
- }
- cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );//wshed.x.y=0.5*wshed.x.y+0.5*img_gray+0加权融合图像
- cvShowImage( "watershed transform", wshed );
- cvReleaseMat( &color_tab );
- }
- }
- return 1;
- }
同上面分析可看出,因为不相连的标记后,程序在masker中的数值不同
经过分水岭算法后,
不同的标记肯定会在不同的区域中,
例如头发部分,我画了一条线标记 ,, 处理后就把头发部分分割了出来
还比如胳膊那一块,正好也分割出来了
我对算法的感性认识:
opencv中的算法是先把输入图像转化成梯度图(标量)
如果把梯度图看成是一个地形的话,就会发现,梯度高的地方就成了山脉,梯度低的地方就是山谷
我们经过标记为不同的区域后,
就从各个标记的地方注水进去,注入的水越来越多的时候,就会出现把流过低些的山脉,从而流到别的山谷中,那么他们就连一了一片区域。
区域分割的要求是把不同的标记分割成不同的地方。所以如果一直注水,可能就会覆盖别的区域了。这时算法就采取某种方法,修大坝使标记的不同区域不会因为注水而相连
他们会互不相干的扩张领地,直到把整个领地都扩张完为止。
函数输出时,自己的标记扩张出来的区域都用之前标记的值表示,代表一个区域。 不同的值代表不同的区域
区域与区域之间的边界由由值-1表示.
转自http://blog.csdn.net/fdl19881/article/details/6749976