深度学习资料整理(压缩感知)

本文总结了深度学习的资料,特别探讨了压缩感知技术,它挑战了传统的采样理论,允许以远低于奈奎斯特频率进行采样。压缩感知利用信号的稀疏性和非自适应线性投影,简化数据采集并重构信号。理论核心包括信号稀疏结构和不相关特性,主要应用涵盖无线通信、阵列信号处理、成像、模拟信息转换和生物传感等领域。
摘要由CSDN通过智能技术生成

近这两年里deep learning技术在图像识别和跟踪等方面有很大的突破,是一大研究热点,里面涉及的数学理论和应用技术很值得深入研究,这系列博客总结了深度学习的博客,原理等资料,供大家学习讨论。

一、深度学习资料整理(博客类)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值