Segment Anything——图像分割的基础模型介绍

Segment Anything是Meta的图像分割项目,包括Segment Anything Model(SAM),它是一种可提示的图像分割模型,能用于增强现实、生物医学图像分割等。SAM基于Transformer,通过大型数据集SA-1B进行训练,提供了预训练权重供使用。它可以接收点、边界框或蒙版作为提示,用于实时图像分割。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能中的基础模型变得越来越重要。这个术语开始在 NLP 领域加快步伐,现在,随着 Segment Anything Model 的出现,他们也慢慢进入了计算机视觉领域。Segment Anything是 Meta 的一个项目,旨在为图像分割的基础模型构建起点。在本文中,我们将了解 Segment Anything 项目最重要的组成部分,包括数据集和模型。

 

除了Segment Anything Model和Dataset之外,我们还会使用官方预训练的权重进行推理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TD程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值