Sylvester矩阵、子结式、辗转相除法的三者关系(第一部分)

R {R} R为域,非 0 0 0多项式 F = a 0 x m + a 1 x m − 1 + … + a m 、 G = b 0 x l + b 1 x l − 1 + … + b l ∈ R [ x ] F = a_{0}x^{m} + a_{1}x^{m - 1} + \ldots + a_{m}、G = b_{0}x^{l} + b_{1}x^{l - 1} + \ldots + b_{l}{\in R}\lbrack x\rbrack F=a0xm+a1xm1++amG=b0xl+b1xl1++blR[x],并且 deg ⁡ ( F ) = m 、 deg ⁡ ( G ) = l 、 m ≥ l > 0 \deg(F) = m、\deg(G) = l、m \geq l > 0 deg(F)=mdeg(G)=lml>0

【Sylvester矩阵定义】

对于一般情况:

S = ( a 0 a 1 … a m 0 0 0 ⋱ ⋱ ⋱ ⋱ 0 0 0 a 0 a 1 … a m b 0 … b l 0 0 0 0 b 0 . . b l 0 0 0 0 ⋱ ⋱ ⋱ 0 0 0 0 b 0 … b l )         } l 行           } m 行 S = \begin{matrix} \begin{pmatrix} a_{0} & a_{1} & \ldots & a_{m} & 0 & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & a_{0} & a_{1} & \ldots & a_{m} \\ b_{0} & \ldots & b_{l} & 0 & 0 & 0 \\ 0 & b_{0} & .. & b_{l} & 0 & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & b_{0} & \ldots & b_{l} \end{pmatrix} & \begin{matrix} \left. \ \begin{matrix} \ \\ \ \\ \ \end{matrix} \right\} & l行 \\ \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \end{matrix} \right\} & m行 \end{matrix} \end{matrix} S= a000b0000a10b000a0bl..0ama10blb000000am000bl            lm

m = 8 、 l = 7 m = 8、l = 7 m=8l=7举例如下:

S = ( a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 ) S = \begin{pmatrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \end{pmatrix} S= a8000000b70000000a7a800000b6b7000000a6a7a80000b5b6b700000a5a6a7a8000b4b5b6b70000a4a5a6a7a800b3b4b5b6b7000a3a4a5a6a7a80b2b3b4b5b6b700a2a3a4a5a6a7a8b1b2b3b4b5b6b70a1a2a3a4a5a6a7b0b1b2b3b4b5b6b7a0a1a2a3a4a5a60b0b1b2b3b4b5b60a0a1a2a3a4a500b0b1b2b3b4b500a0a1a2a3a4000b0b1b2b3b4000a0a1a2a30000b0b1b2b30000a0a1a200000b0b1b200000a0a1000000b0b1000000a00000000b0

【子结式定义】

对于 0 ≤ j < l 0 \leq j < l 0j<l,称多项式

S j ( x ) = s u b r e s j ( F , G ) = ∑ i = 0 j det ⁡ ( S i j ) x i S_{j}(x) = subres_{j}(F,G) = \sum_{i = 0}^{j}{\det\left( S_{ij} \right)x^{i}} Sj(x)=subresj(F,G)=i=0jdet(Sij)xi

其中 S i j S_{ij} Sij为通过删除矩阵 S S S l l l F F F系数中的最后 j j j行, m m m G G G系数中的最后 j j j行,和最后 2 j + 1 2j + 1 2j+1列,但第 m + l − i − j m + l - i - j m+lij列除外,所得的子矩阵,这里 0 ≤ i ≤ j < l 0 \leq i \leq j < l 0ij<l

如果 m > l + 1 m > l + 1 m>l+1,则额外拓广定义 S l = b m − l − 1 G 、 R l = b 0 m − l S_{l} = b^{m - l - 1}G、R_{l} = b_{0}^{m - l} Sl=bml1GRl=b0ml,并且当 l < j < m − 1 l < j < m - 1 l<j<m1时,定义 S j ( x ) = R j = 0 S_{j}(x) = R_{j} = 0 Sj(x)=Rj=0

如果 deg ⁡ ( S j , x ) = r < j \deg\left( S_{j},x \right) = r < j deg(Sj,x)=r<j,则称 S j S_{j} Sj r r r次亏损的;否则,称 S j S_{j} Sj为正则的。

容易看出 S 0 = R 0 S_{0} = R_{0} S0=R0 F F F G G G关于 x x x的结式。

m = 8 、 l = 7 、 j = 3 m = 8、l = 7、j = 3 m=8l=7j=3举例如下:

S 30 =                 第 m + l − 0 − j = 12 列   ( a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 0 0 0 0 b 7 b 6 b 5 b 4 b 3 0 0 0 0 0 b 7 b 6 b 5 b 4 b 0 )           } l − j = 4 行             } m − j = 5 行 S_{30} = \begin{matrix} \begin{matrix} \ & \ & \ & \ & \ & \ & \ & \ & 第m + l - 0 - j = 12列 \end{matrix} & \ \\ \begin{pmatrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{0} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{0} \end{pmatrix} & \begin{matrix} \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \end{matrix} \right\} l - j = 4行 \\ \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \\ \ \end{matrix} \right\} m - j = 5行 \end{matrix} \end{matrix} S30=        m+l0j=12 a8000b70000a7a800b6b7000a6a7a80b5b6b700a5a6a7a8b4b5b6b70a4a5a6a7b3b4b5b6b7a3a4a5a6b2b3b4b5b6a2a3a4a5b1b2b3b4b5a1a2a3a4b0b1b2b3b4000a00000b0        lj=4       mj=5

S 31 =                 第 m + l − 1 − j = 11 列   ( a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 1 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 0 0 0 0 0 b 7 b 6 b 5 b 4 b 1 )           } l − j = 4 行             } m − j = 5 行 S_{31} = \begin{matrix} \begin{matrix} \ & \ & \ & \ & \ & \ & \ & \ & 第m + l - 1 - j = 11列 \end{matrix} & \ \\ \begin{pmatrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{0} \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{1} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{0} \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{1} \end{pmatrix} & \begin{matrix} \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \end{matrix} \right\} l - j = 4行 \\ \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \\ \ \end{matrix} \right\} m - j = 5行 \end{matrix} \end{matrix} S31=        m+l1j=11 a8000b70000a7a800b6b7000a6a7a80b5b6b700a5a6a7a8b4b5b6b70a4a5a6a7b3b4b5b6b7a3a4a5a6b2b3b4b5b6a2a3a4a5b1b2b3b4b5a1a2a3a4b0b1b2b3b400a0a1000b0b1        lj=4       mj=5

S 32 =                 第 m + l − 2 − j = 10 列   ( a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 1 0 0 0 a 8 a 7 a 6 a 5 a 4 a 2 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 1 0 0 0 0 b 7 b 6 b 5 b 4 b 2 )           } l − j = 4 行             } m − j = 5 行 S_{32} = \begin{matrix} \begin{matrix} \ & \ & \ & \ & \ & \ & \ & \ & 第m + l - 2 - j = 10列 \end{matrix} & \ \\ \begin{pmatrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{0} \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{1} \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{2} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{0} \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{1} \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{2} \end{pmatrix} & \begin{matrix} \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \end{matrix} \right\} l - j = 4行 \\ \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \\ \ \end{matrix} \right\} m - j = 5行 \end{matrix} \end{matrix} S32=        m+l2j=10 a8000b70000a7a800b6b7000a6a7a80b5b6b700a5a6a7a8b4b5b6b70a4a5a6a7b3b4b5b6b7a3a4a5a6b2b3b4b5b6a2a3a4a5b1b2b3b4b5a1a2a3a4b0b1b2b3b40a0a1a200b0b1b2        lj=4       mj=5

S 33 =                 第 m + l − 3 − j = 9 列   ( a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 0 0 0 0 b 7 b 6 b 5 b 4 b 3 )           } l − j = 4 行             } m − j = 5 行 S_{33} = \begin{matrix} \begin{matrix} \ & \ & \ & \ & \ & \ & \ & \ & 第m + l - 3 - j = 9列 \end{matrix} & \ \\ \begin{pmatrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} \end{pmatrix} & \begin{matrix} \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \end{matrix} \right\} l - j = 4行 \\ \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \\ \ \end{matrix} \right\} m - j = 5行 \end{matrix} \end{matrix} S33=        m+l3j=9 a8000b70000a7a800b6b7000a6a7a80b5b6b700a5a6a7a8b4b5b6b70a4a5a6a7b3b4b5b6b7a3a4a5a6b2b3b4b5b6a2a3a4a5b1b2b3b4b5a1a2a3a4b0b1b2b3b4a0a1a2a30b0b1b2b3        lj=4       mj=5

S 3 = ∣ a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 0 0 0 0 b 7 b 6 b 5 b 4 b 3 ∣ x 3 + ∣ a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 1 0 0 0 a 8 a 7 a 6 a 5 a 4 a 2 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 1 0 0 0 0 b 7 b 6 b 5 b 4 b 2 ∣ x 2 + ∣ a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 1 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 0 0 0 0 0 b 7 b 6 b 5 b 4 b 1 ∣ x 1 + ∣ a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 0 0 0 0 b 7 b 6 b 5 b 4 b 3 0 0 0 0 0 b 7 b 6 b 5 b 4 b 0 ∣ S_{3} = \left| \begin{matrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} \end{matrix} \right|x^{3} + \left| \begin{matrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{0} \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{1} \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{2} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{0} \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{1} \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{2} \end{matrix} \right|x^{2} + \left| \begin{matrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{0} \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{1} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{0} \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{1} \end{matrix} \right|x^{1} + \left| \begin{matrix} a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{0} \\ b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{0} \end{matrix} \right| S3= a8000b70000a7a800b6b7000a6a7a80b5b6b700a5a6a7a8b4b5b6b70a4a5a6a7b3b4b5b6b7a3a4a5a6b2b3b4b5b6a2a3a4a5b1b2b3b4b5a1a2a3a4b0b1b2b3b4a0a1a2a30b0b1b2b3 x3+ a8000b70000a7a800b6b7000a6a7a80b5b6b700a5a6a7a8b4b5b6b70a4a5a6a7b3b4b5b6b7a3a4a5a6b2b3b4b5b6a2a3a4a5b1b2b3b4b5a1a2a3a4b0b1b2b3b40a0a1a200b0b1b2 x2+ a8000b70000a7a800b6b7000a6a7a80b5b6b700a5a6a7a8b4b5b6b70a4a5a6a7b3b4b5b6b7a3a4a5a6b2b3b4b5b6a2a3a4a5b1b2b3b4b5a1a2a3a4b0b1b2b3b400a0a1000b0b1 x1+ a8000b70000a7a800b6b7000a6a7a80b5b6b700a5a6a7a8b4b5b6b70a4a5a6a7b3b4b5b6b7a3a4a5a6b2b3b4b5b6a2a3a4a5b1b2b3b4b5a1a2a3a4b0b1b2b3b4000a00000b0

【辗转相除法】

m = 8 、 l = 7 m = 8、l = 7 m=8l=7为例子,并令 F 0 = F 、 F 1 = G F_{0} = F、F_{1} = G F0=FF1=G,可得

F 0 = Q 1 × F 1 + F 2            deg ⁡ ( F 0 ) = 8        deg ⁡ ( F 1 ) = 7        deg ⁡ ( F 2 ) = 6 F_{0} = Q_{1} \times F_{1} + F_{2}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{0} \right) = 8\ \ \ \ \ \ \deg\left( F_{1} \right) = 7\ \ \ \ \ \ \deg\left( F_{2} \right) = 6 F0=Q1×F1+F2          deg(F0)=8      deg(F1)=7      deg(F2)=6

F 1 = Q 2 × F 2 + F 3            deg ⁡ ( F 1 ) = 7        deg ⁡ ( F 2 ) = 6        deg ⁡ ( F 3 ) = 5 F_{1} = Q_{2} \times F_{2} + F_{3}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{1} \right) = 7\ \ \ \ \ \ \deg\left( F_{2} \right) = 6\ \ \ \ \ \ \deg\left( F_{3} \right) = 5 F1=Q2×F2+F3          deg(F1)=7      deg(F2)=6      deg(F3)=5

F 2 = Q 3 × F 3 + F 4            deg ⁡ ( F 2 ) = 6        deg ⁡ ( F 3 ) = 5        deg ⁡ ( F 4 ) = 4 F_{2} = Q_{3} \times F_{3} + F_{4}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{2} \right) = 6\ \ \ \ \ \ \deg\left( F_{3} \right) = 5\ \ \ \ \ \ \deg\left( F_{4} \right) = 4 F2=Q3×F3+F4          deg(F2)=6      deg(F3)=5      deg(F4)=4

F 3 = Q 4 × F 4 + F 5            deg ⁡ ( F 3 ) = 5        deg ⁡ ( F 4 ) = 4        deg ⁡ ( F 5 ) = 3 F_{3} = Q_{4} \times F_{4} + F_{5}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{3} \right) = 5\ \ \ \ \ \ \deg\left( F_{4} \right) = 4\ \ \ \ \ \ \deg\left( F_{5} \right) = 3 F3=Q4×F4+F5          deg(F3)=5      deg(F4)=4      deg(F5)=3

F 4 = Q 5 × F 5 + F 6            deg ⁡ ( F 4 ) = 4        deg ⁡ ( F 5 ) = 3        deg ⁡ ( F 6 ) = 2 F_{4} = Q_{5} \times F_{5} + F_{6}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{4} \right) = 4\ \ \ \ \ \ \deg\left( F_{5} \right) = 3\ \ \ \ \ \ \deg\left( F_{6} \right) = 2 F4=Q5×F5+F6          deg(F4)=4      deg(F5)=3      deg(F6)=2

F 5 = Q 6 × F 6 + F 7            deg ⁡ ( F 5 ) = 3        deg ⁡ ( F 6 ) = 2        deg ⁡ ( F 7 ) = 1 F_{5} = Q_{6} \times F_{6} + F_{7}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{5} \right) = 3\ \ \ \ \ \ \deg\left( F_{6} \right) = 2\ \ \ \ \ \ \deg\left( F_{7} \right) = 1 F5=Q6×F6+F7          deg(F5)=3      deg(F6)=2      deg(F7)=1

F 6 = Q 7 × F 7 + F 8            deg ⁡ ( F 6 ) = 2        deg ⁡ ( F 7 ) = 1        deg ⁡ ( F 8 ) = 0 F_{6} = Q_{7} \times F_{7} + F_{8}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{6} \right) = 2\ \ \ \ \ \ \deg\left( F_{7} \right) = 1\ \ \ \ \ \ \deg\left( F_{8} \right) = 0 F6=Q7×F7+F8          deg(F6)=2      deg(F7)=1      deg(F8)=0

注意,上面的举例仅仅是最一般的情况,实际算法运行步骤可能小于 7 7 7步。

【辗转相除法】

m = 8 、 l = 7 m = 8、l = 7 m=8l=7为例子,并令 F 0 = F 、 F 1 = G F_{0} = F、F_{1} = G F0=FF1=G,可得

F 0 = Q 1 × F 1 + F 2            deg ⁡ ( F 0 ) = 8        deg ⁡ ( F 1 ) = 7        deg ⁡ ( F 2 ) = 6 F_{0} = Q_{1} \times F_{1} + F_{2}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{0} \right) = 8\ \ \ \ \ \ \deg\left( F_{1} \right) = 7\ \ \ \ \ \ \deg\left( F_{2} \right) = 6 F0=Q1×F1+F2          deg(F0)=8      deg(F1)=7      deg(F2)=6

F 1 = Q 2 × F 2 + F 3            deg ⁡ ( F 1 ) = 7        deg ⁡ ( F 2 ) = 6        deg ⁡ ( F 3 ) = 5 F_{1} = Q_{2} \times F_{2} + F_{3}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{1} \right) = 7\ \ \ \ \ \ \deg\left( F_{2} \right) = 6\ \ \ \ \ \ \deg\left( F_{3} \right) = 5 F1=Q2×F2+F3          deg(F1)=7      deg(F2)=6      deg(F3)=5

F 2 = Q 3 × F 3 + F 4            deg ⁡ ( F 2 ) = 6        deg ⁡ ( F 3 ) = 5        deg ⁡ ( F 4 ) = 4 F_{2} = Q_{3} \times F_{3} + F_{4}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{2} \right) = 6\ \ \ \ \ \ \deg\left( F_{3} \right) = 5\ \ \ \ \ \ \deg\left( F_{4} \right) = 4 F2=Q3×F3+F4          deg(F2)=6      deg(F3)=5      deg(F4)=4

F 3 = Q 4 × F 4 + F 5            deg ⁡ ( F 3 ) = 5        deg ⁡ ( F 4 ) = 4        deg ⁡ ( F 5 ) = 3 F_{3} = Q_{4} \times F_{4} + F_{5}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{3} \right) = 5\ \ \ \ \ \ \deg\left( F_{4} \right) = 4\ \ \ \ \ \ \deg\left( F_{5} \right) = 3 F3=Q4×F4+F5          deg(F3)=5      deg(F4)=4      deg(F5)=3

F 4 = Q 5 × F 5 + F 6            deg ⁡ ( F 4 ) = 4        deg ⁡ ( F 5 ) = 3        deg ⁡ ( F 6 ) = 2 F_{4} = Q_{5} \times F_{5} + F_{6}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{4} \right) = 4\ \ \ \ \ \ \deg\left( F_{5} \right) = 3\ \ \ \ \ \ \deg\left( F_{6} \right) = 2 F4=Q5×F5+F6          deg(F4)=4      deg(F5)=3      deg(F6)=2

F 5 = Q 6 × F 6 + F 7            deg ⁡ ( F 5 ) = 3        deg ⁡ ( F 6 ) = 2        deg ⁡ ( F 7 ) = 1 F_{5} = Q_{6} \times F_{6} + F_{7}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{5} \right) = 3\ \ \ \ \ \ \deg\left( F_{6} \right) = 2\ \ \ \ \ \ \deg\left( F_{7} \right) = 1 F5=Q6×F6+F7          deg(F5)=3      deg(F6)=2      deg(F7)=1

F 6 = Q 7 × F 7 + F 8            deg ⁡ ( F 6 ) = 2        deg ⁡ ( F 7 ) = 1        deg ⁡ ( F 8 ) = 0 F_{6} = Q_{7} \times F_{7} + F_{8}\ \ \ \ \ \ \ \ \ \ \deg\left( F_{6} \right) = 2\ \ \ \ \ \ \deg\left( F_{7} \right) = 1\ \ \ \ \ \ \deg\left( F_{8} \right) = 0 F6=Q7×F7+F8          deg(F6)=2      deg(F7)=1      deg(F8)=0

注意,上面的举例仅仅是最一般的情况,实际算法运行步骤可能小于 7 7 7步。

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值