数学分析原理答案——第二章 习题6

【第二章 习题6】

E ′ E^{'} E是集 E E E的一切极限点的集。证明 E ′ E^{'} E是闭集。证明 E E E E ‾ \overline{E} E有相同的极限点(回想 E ‾ = E ∪ E ′ \overline{E} = E \cup E^{'} E=EE)。 E E E E ′ E^{'} E是否总有相同的极限点呢?

【证明】

  1. 证明 E ′ E^{'} E是闭集

对于 E ′ E^{'} E的任意极限点 e ′ ′ e^{''} e′′,对于任意的邻域半径 r 2 > 0 \frac{r}{2} > 0 2r>0,总有

∃ e ′ ∈ E ′ ( ∣ e ′ ′ − e ′ ∣ < r 2 ) \exists e^{'} \in E^{'}\left( \left| e^{''} - e^{'} \right| < \frac{r}{2} \right) eE( e′′e <2r)

由于 e ′ ∈ E ′ e^{'} \in E^{'} eE,所以 e ′ e^{'} e是集 E E E的极限点,也就是对于邻域半径 r 2 \frac{r}{2} 2r,总有

∃ e ∈ E ( ∣ e ′ − e ∣ < r 2 ) \exists e \in E\left( \left| e^{'} - e \right| < \frac{r}{2} \right) eE( ee <2r)

综合这两个不等式可得

∃ e ′ ∈ E ′ , e ∈ E ( ∣ e ′ ′ − e ∣ ≤ ∣ e ′ ′ − e ′ ∣ + ∣ e ′ − e ∣ < r ) \exists e^{'} \in E^{'},e \in E\left( \left| e^{''} - e \right| \leq \left| e^{''} - e^{'} \right| + \left| e^{'} - e \right| < r \right) eE,eE( e′′e e′′e + ee <r)

∃ e ∈ E ( ∣ e ′ ′ − e ∣ < r ) \exists e \in E\left( \left| e^{''} - e \right| < r \right) eE( e′′e <r)

这就是说 e ′ ′ e^{''} e′′是集 E E E的极限点,而 E ′ E^{'} E是集 E E E的一切极限点的集,所以

e ′ ′ ∈ E ′ e^{''} \in E^{'} e′′E

E ′ E^{'} E一定是闭集。

  1. 证明 E E E E ‾ \overline{E} E有相同的极限点

首先, E E E的极限点必是 E ‾ \overline{E} E的极限点。

由于 E ‾ \overline{E} E是两个集合的并集,所以 E ‾ \overline{\mathbf{E}} E的极限点是 E \mathbf{E} E的极限点或者 E ′ \mathbf{E}^{\mathbf{'}} E的极限点(结合并集特点,利用反证法可知)。根据1的结论, E ′ E^{'} E的极限点都是集 E E E的极限点,所以 E ‾ \overline{E} E的极限点是 E E E的极限点。

综上可得, E E E E ‾ \overline{E} E有相同的极限点

  1. E E E E ′ E^{'} E并不一定有相同的极限点

E = { 1 n ∣ n ∈ N + } E = \left\{ \frac{1}{n}|n \in \mathbb{N}^{+} \right\} E={n1nN+}

E E E的极限点是 0 0 0,但 E ′ = { 0 } E^{'} = \left\{ 0 \right\} E={0},没有极限点,只有一个孤立点。

  • 25
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值