数学分析原理答案——第四章 习题6

【第四章 习题6】

如果 f f f定义在 E E E上,那么 f f f的图像就是点 ( x ,   f ( x ) ) \left( x,\ f(x) \right) (x, f(x))所成的集,其中 x ∈ E x \in E xE。特别地,如果 E E E是实数的一个集,并且 f f f还是实值的,那么 f f f的图像便是平面的一个子集。

E E E是紧的,证明: f f f E E E上连续当且仅当它的图像是紧的。

【证明】

(1) ⇒ \Rightarrow

设函数

g ( x ) = ( x , f ( x ) ) g(x) = \left( x,f(x) \right) g(x)=(x,f(x))

任取 E E E上一点 p p p,由于对于任意的 ε > 0 \varepsilon > 0 ε>0,都有 δ > 0 \delta > 0 δ>0,使得当

d ( x , p ) < δ 2 d(x,p) < \frac{\delta}{2} d(x,p)<2δ

时,必有

d ( f ( x ) , f ( p ) ) < ε 2 d\left( f(x),f(p) \right) < \frac{\varepsilon}{2} d(f(x),f(p))<2ε

δ ∗ = min ⁡ ( ε 2 , δ 2 ) \delta^{*} = \min\left( \frac{\varepsilon}{2},\frac{\delta}{2} \right) δ=min(2ε,2δ)

那么当

d ( x , p ) < δ ∗ d(x,p) < \delta^{*} d(x,p)<δ

时,必有

∣ g ( x ) − g ( p ) ∣ = d ( ( x ,   f ( x ) ) , ( p ,   f ( p ) ) ) \left| g(x) - g(p) \right| = d\left( \left( x,\ f(x) \right),\left( p,\ f(p) \right) \right) g(x)g(p)=d((x, f(x)),(p, f(p)))

≤ d ( ( x ,   f ( x ) ) , ( p ,   f ( x ) ) ) + d ( ( p ,   f ( x ) ) , ( p ,   f ( p ) ) ) \leq d\left( \left( x,\ f(x) \right),\left( p,\ f(x) \right) \right) + d\left( \left( p,\ f(x) \right),\left( p,\ f(p) \right) \right) d((x, f(x)),(p, f(x)))+d((p, f(x)),(p, f(p)))

= d ( x , p ) + d ( f ( x ) , f ( p ) ) ≤ ε = d(x,p) + d\left( f(x),f(p) \right) \leq \varepsilon =d(x,p)+d(f(x),f(p))ε

所以 g ( x ) g(x) g(x)为连续函数,而 E E E是紧的,所以它的图像 g ( E ) g(E) g(E)是紧的。

(2) ⇐ \Leftarrow

任取 p ∈ E p \in E pE   p \ p  p是孤立点时 f f f在此处连续,下面考虑 p p p为极限点时,考虑任意一个序列

( x n , f ( x n ) ) \left( x_{n},f\left( x_{n} \right) \right) (xn,f(xn))

其中

x n → p           x n ≠ p x_{n} \rightarrow p\ \ \ \ \ \ \ \ \ x_{n} \neq p xnp         xn=p

由于紧集上的序列必有极限点,而 x n → p x_{n} \rightarrow p xnp g ( E ) g(E) g(E)是闭集,所以对部分极限对应的子序列 { x N n } \{ x_{N_{n}}\} {xNn}来讲,有

lim ⁡ n → ∞ ( x N n , f ( x N n ) ) = ( p , f ( p ) ) \lim_{n \rightarrow \infty}\left( x_{N_{n}},f\left( x_{N_{n}} \right) \right) = \left( p,f(p) \right) nlim(xNn,f(xNn))=(p,f(p))

于是,所有部分极限满足

lim ⁡ n → ∞ f ( x N n ) = f ( p ) \lim_{n \rightarrow \infty}{f\left( x_{N_{n}} \right)} = f(p) nlimf(xNn)=f(p)

也就是说

lim ⁡ n → ∞ f ( x n ) = f ( p ) \lim_{n \rightarrow \infty}{f\left( x_{n} \right)} = f(p) nlimf(xn)=f(p)

根据【定理4.2】——海涅归结原理,可得 f f f p p p连续。由于 p p p是任意的,所以 f f f E E E上连续。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值