数学分析原理答案——第四章 习题25

【第四章 习题25】

如果 A ⊂ R k A \subset R^{k} ARk B ⊂ R k B \subset R^{k} BRk,定义 A + B A + B A+B为由一切的和 x + y \mathbf{x} + \mathbf{y} x+y组成的集,这里 x ∈ A \mathbf{x} \in A xA y ∈ B \mathbf{y}\mathbf{\in}B yB

a. 如果 K K K R k R^{k} Rk里的紧子集,而 C C C R k R^{k} Rk里的闭子集,证明 K + C K + C K+C是闭集。

b. 设 a a a是一个无理数, C 1 C_{1} C1为一切整数构成的集, C 2 C_{2} C2是一切 n a na na构成的集, n ∈ C 1 n \in C_{1} nC1。证明 C 1 C_{1} C1 C 2 C_{2} C2 R 1 R^{1} R1的闭子集,但它们的和 C 1 + C 2 C_{1} + C_{2} C1+C2不闭。后面一点由证明 C 1 + C 2 C_{1} + C_{2} C1+C2 R 1 R^{1} R1的可数稠密子集推得。

【证明】

a. 任取 z 0 ∉ K + C \mathbf{z}_{\mathbf{0}} \notin K + C z0/K+C,令 F = z 0 − C F = \mathbf{z}_{\mathbf{0}} - C F=z0C为由一切 z 0 − y \mathbf{z}_{\mathbf{0}}\mathbf{-}\mathbf{y} z0y组成的集,这里 y ∈ C \mathbf{y} \in C yC。那么

z 0 ∉ K + C ⇔ K ∩ F = ∅ \mathbf{z}_{\mathbf{0}} \notin K + C \Leftrightarrow K \cap F = \varnothing z0/K+CKF=

由于 z 0 \mathbf{z}_{\mathbf{0}} z0固定,容易知道 F F F为闭集,根据习题21的结论,可知存在 δ > 0 \delta > 0 δ>0满足

∀ x ∈ K , ∀ y ∈ C [ d ( z 0 − y , x ) > δ ] \forall\mathbf{x} \in K,\forall\mathbf{y} \in C\left\lbrack d\left( \mathbf{z}_{\mathbf{0}}\mathbf{-}\mathbf{y}\mathbf{,x} \right)\mathbf{>}\delta \right\rbrack xK,yC[d(z0y,x)>δ]

K 、 C K、C KC R k R^{k} Rk的子集,其度量函数满足

d ( z 0 − y , x ) = ∣ z 0 − y − x ∣ = d ( z 0 , x + y ) d\left( \mathbf{z}_{\mathbf{0}}\mathbf{-}\mathbf{y}\mathbf{,x} \right) = \left| \mathbf{z}_{\mathbf{0}}\mathbf{-}\mathbf{y}\mathbf{-}\mathbf{x} \right| = d\left( \mathbf{z}_{\mathbf{0}}\mathbf{,x}\mathbf{+}\mathbf{y} \right) d(z0y,x)=z0yx=d(z0,x+y)

所以

d ( z 0 , x + y ) > δ d\left( \mathbf{z}_{\mathbf{0}}\mathbf{,x +}\mathbf{y} \right) > \delta d(z0,x+y)>δ

也就是说 z 0 \mathbf{z}_{\mathbf{0}} z0的某邻域与 K + C K + C K+C不相交, z 0 \mathbf{z}_{\mathbf{0}} z0 ( K + C ) c (K + C)^{c} (K+C)c的内点。也就是说 K + C K + C K+C的余集是开集,从而 K + C K + C K+C是闭集。

b. 由于 C 1 、 C 2 C_{1}、C_{2} C1C2中均无极限点、都是孤立点,所以 C 1 、 C 2 C_{1}、C_{2} C1C2 R 1 R^{1} R1上的闭子集。

下面证明 C 1 + C 2 C_{1} + C_{2} C1+C2 R 1 R^{1} R1上稠密

任取 q 1 = a ′ = a + m > 0 q_{1} = a^{'} = a + m > 0 q1=a=a+m>0   p 1 > a ′ \ p_{1} > a^{'}  p1>a,其中 m 、 p 1 m、p_{1} mp1是整数

类似辗转相除法,循环进行下面的操作

p 1 = n 1 q 1 + r 1 p_{1} = n_{1}q_{1} + r_{1} p1=n1q1+r1

p 2 = n 2 q 2 + r 2 p_{2} = n_{2}q_{2} + r_{2} p2=n2q2+r2

⋮ \vdots

p k = n k q k + r k p_{k} = n_{k}q_{k} + r_{k} pk=nkqk+rk

p k + 1 = n k + 1 q k + 1 + r k + 1 p_{k + 1} = n_{k + 1}q_{k + 1} + r_{k + 1} pk+1=nk+1qk+1+rk+1

⋮ \vdots

其中 n 1 , n 2 … n k … n_{1},n_{2}\ldots n_{k}\ldots n1,n2nk都是正整数,步骤之间满足

p k + 1 = q k 、 q k + 1 = r k p_{k + 1} = q_{k}、q_{k + 1} = r_{k} pk+1=qkqk+1=rk

n k n_{k} nk是使 0 ≤ r k < q k 0 \leq r_{k} < q_{k} 0rk<qk成立的正整数。

由于 a ′ a^{'} a是无理数,所以该过程可无限进行下去(否者 a ′ a^{'} a就可以表示为分数),随着进行的步骤,序列 { r k } \{ r_{k}\} {rk}将很快衰减至接近 0 0 0,于是对于任意的 ε > 0 \varepsilon > 0 ε>0,都存在 N N N,使得当 k > N k > N k>N时, r k < ε r_{k} < \varepsilon rk<ε,而

r k ∈ C 1 + C 2 r_{k} \in C_{1} + C_{2} rkC1+C2

r k r_{k} rk乘以一个整数时,乘积可靠近任意实数,也就是说 C 1 + C 2 C_{1} + C_{2} C1+C2 R 1 R^{1} R1上稠密。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值