数学分析原理答案——第五章 习题18

【第五章 习题18】

f f f [ a , b ] \lbrack a,b\rbrack [a,b]上的实值函数, n n n是正整数,对于每个 t ∈ [ a , b ] t \in \lbrack a,b\rbrack t[a,b] f ( n − 1 ) f^{(n - 1)} f(n1)存在。令 α , β \alpha,\beta α,β P P P的定义是Taylor定理5.15那样的。对于 t ∈ [ a , b ] , t ≠ β t \in \lbrack a,b\rbrack,t \neq \beta t[a,b],t=β,定义

Q ( t ) = f ( t ) − f ( β ) t − β Q(t) = \frac{f(t) - f(\beta)}{t - \beta} Q(t)=tβf(t)f(β)

并把

f ( t ) − f ( β ) = ( t − β ) Q ( t ) f(t) - f(\beta) = (t - \beta)Q(t) f(t)f(β)=(tβ)Q(t)

t = α t = \alpha t=α处微分 n − 1 n - 1 n1次,就得到Taylor定理的下面这种形式:

f ( β ) = P ( β ) + Q ( n − 1 ) ( α ) ( n − 1 ) ! ( β − α ) n f(\beta) = P(\beta) + \frac{Q^{(n - 1)}(\alpha)}{(n - 1)!}(\beta - \alpha)^{n} f(β)=P(β)+(n1)!Q(n1)(α)(βα)n

【证明】

由于

P ( β ) = ∑ k = 0 n − 1 f ( k ) ( α ) k ! ( β − α ) k P(\beta) = \sum_{k = 0}^{n - 1}{\frac{f^{(k)}(\alpha)}{k!}(\beta - \alpha)^{k}} P(β)=k=0n1k!f(k)(α)(βα)k

G n ( t ) = ∑ k = 0 n − 1 f ( k ) ( t ) k ! ( β − t ) k G_{n}(t) = \sum_{k = 0}^{n - 1}{\frac{f^{(k)}(t)}{k!}(\beta - t)^{k}} Gn(t)=k=0n1k!f(k)(t)(βt)k

H n ( t ) = G n ( t ) − f ( β ) ( β − t ) n H_{n}(t) = \frac{G_{n}(t) - f(\beta)}{(\beta - t)^{n}} Hn(t)=(βt)nGn(t)f(β)

原等式即

H n ( α ) = Q ( n − 1 ) ( α ) ( n − 1 ) ! H_{n}(\alpha) = \frac{Q^{(n - 1)}(\alpha)}{(n - 1)!} Hn(α)=(n1)!Q(n1)(α)

下面利用数学归纳法进行证明

H n ( t ) = Q ( n − 1 ) ( t ) ( n − 1 ) ! H_{n}(t) = \frac{Q^{(n - 1)}(t)}{(n - 1)!} Hn(t)=(n1)!Q(n1)(t)

  1. n = 1 n = 1 n=1时显然成立
  2. 假定 n = m n = m n=m时成立

H m ( t ) = G m ( t ) − f ( β ) ( β − t ) m = Q ( m − 1 ) ( t ) ( m − 1 ) ! H_{m}(t) = \frac{G_{m}(t) - f(\beta)}{(\beta - t)^{m}} = \frac{Q^{(m - 1)}(t)}{(m - 1)!} Hm(t)=(βt)mGm(t)f(β)=(m1)!Q(m1)(t)

下面证明 n = m + 1 n = m + 1 n=m+1时也成立,两边对 t t t求导可得

[ H m ( t ) ] ′ = [ G m ( t ) ] ′ ( β − t ) m + m [ G m ( t ) − f ( β ) ] ( β − t ) m − 1 ( β − t ) 2 m \left\lbrack H_{m}(t) \right\rbrack^{'} = \frac{\left\lbrack G_{m}(t) \right\rbrack^{'}(\beta - t)^{m} + m\left\lbrack G_{m}(t) - f(\beta) \right\rbrack(\beta - t)^{m - 1}}{(\beta - t)^{2m}} [Hm(t)]=(βt)2m[Gm(t)](βt)m+m[Gm(t)f(β)](βt)m1

= [ G m ( t ) ] ′ ( β − t ) + m [ G m ( t ) − f ( β ) ] ( β − t ) m + 1 = \frac{\left\lbrack G_{m}(t) \right\rbrack^{'}(\beta - t) + m\left\lbrack G_{m}(t) - f(\beta) \right\rbrack}{(\beta - t)^{m + 1}} =(βt)m+1[Gm(t)](βt)+m[Gm(t)f(β)]

其中

[ G m ( t ) ] ′ = ∑ k = 0 m − 1 [ f ( k ) ( t ) k ! ( β − t ) k ] ′ \left\lbrack G_{m}(t) \right\rbrack^{'} = \sum_{k = 0}^{m - 1}\left\lbrack \frac{f^{(k)}(t)}{k!}(\beta - t)^{k} \right\rbrack^{'} [Gm(t)]=k=0m1[k!f(k)(t)(βt)k]

= f ′ ( t ) + ∑ k = 1 m − 1 [ − f ( k ) ( t ) ( k − 1 ) ! ( β − t ) k − 1 + f ( k + 1 ) ( t ) k ! ( β − t ) k ]   = f^{'}(t) + \sum_{k = 1}^{m - 1}\left\lbrack - \frac{f^{(k)}(t)}{(k - 1)!}(\beta - t)^{k - 1} + \frac{f^{(k + 1)}(t)}{k!}(\beta - t)^{k} \right\rbrack\ =f(t)+k=1m1[(k1)!f(k)(t)(βt)k1+k!f(k+1)(t)(βt)k] 

= ∑ k = 1 m − 1 [ − f ( k ) ( t ) ( k − 1 ) ! ( β − t ) k − 1 + f ( k ) ( t ) ( k − 1 ) ! ( β − t ) k − 1 ] + f ( m ) ( t ) ( m − 1 ) ! ( β − t ) m − 1 = \sum_{k = 1}^{m - 1}\left\lbrack - \frac{f^{(k)}(t)}{(k - 1)!}(\beta - t)^{k - 1} + \frac{f^{(k)}(t)}{(k - 1)!}(\beta - t)^{k - 1} \right\rbrack + \frac{f^{(m)}(t)}{(m - 1)!}(\beta - t)^{m - 1} =k=1m1[(k1)!f(k)(t)(βt)k1+(k1)!f(k)(t)(βt)k1]+(m1)!f(m)(t)(βt)m1

= f ( m ) ( t ) ( m − 1 ) ! ( β − t ) m − 1 = \frac{f^{(m)}(t)}{(m - 1)!}(\beta - t)^{m - 1} =(m1)!f(m)(t)(βt)m1

所以

[ H m ( t ) ] ′ = f ( m ) ( t ) ( m − 1 ) ! ( β − t ) m + m [ G m ( t ) − f ( β ) ] ( β − t ) m + 1 \left\lbrack H_{m}(t) \right\rbrack^{'} = \frac{\frac{f^{(m)}(t)}{(m - 1)!}(\beta - t)^{m} + m\left\lbrack G_{m}(t) - f(\beta) \right\rbrack}{(\beta - t)^{m + 1}} [Hm(t)]=(βt)m+1(m1)!f(m)(t)(βt)m+m[Gm(t)f(β)]

= m [ f ( m ) ( t ) m ! ( β − t ) m + G m ( t ) − f ( β ) ] ( β − t ) m + 1 = \frac{m\left\lbrack \frac{f^{(m)}(t)}{m!}(\beta - t)^{m} + G_{m}(t) - f(\beta) \right\rbrack}{(\beta - t)^{m + 1}} =(βt)m+1m[m!f(m)(t)(βt)m+Gm(t)f(β)]

= m [ G m + 1 ( t ) − f ( β ) ] ( β − t ) m + 1 = Q ( m ) ( t ) ( m − 1 ) ! = \frac{m\left\lbrack G_{m + 1}(t) - f(\beta) \right\rbrack}{(\beta - t)^{m + 1}} = \frac{Q^{(m)}(t)}{(m - 1)!} =(βt)m+1m[Gm+1(t)f(β)]=(m1)!Q(m)(t)

G m + 1 ( t ) − f ( β ) ( β − t ) m + 1 = Q ( m ) ( t ) m ! \frac{G_{m + 1}(t) - f(\beta)}{(\beta - t)^{m + 1}} = \frac{Q^{(m)}(t)}{m!} (βt)m+1Gm+1(t)f(β)=m!Q(m)(t)

综上可得

H n ( t ) = Q ( n − 1 ) ( t ) ( n − 1 ) ! H_{n}(t) = \frac{Q^{(n - 1)}(t)}{(n - 1)!} Hn(t)=(n1)!Q(n1)(t)

t = α t = \alpha t=α代入可得

H n ( α ) = Q ( n − 1 ) ( α ) ( n − 1 ) ! H_{n}(\alpha) = \frac{Q^{(n - 1)}(\alpha)}{(n - 1)!} Hn(α)=(n1)!Q(n1)(α)

f ( β ) = P ( β ) + Q ( n − 1 ) ( α ) ( n − 1 ) ! ( β − α ) n f(\beta) = P(\beta) + \frac{Q^{(n - 1)}(\alpha)}{(n - 1)!}(\beta - \alpha)^{n} f(β)=P(β)+(n1)!Q(n1)(α)(βα)n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值