【第五章 习题18】
设 f f f是 [ a , b ] \lbrack a,b\rbrack [a,b]上的实值函数, n n n是正整数,对于每个 t ∈ [ a , b ] t \in \lbrack a,b\rbrack t∈[a,b], f ( n − 1 ) f^{(n - 1)} f(n−1)存在。令 α , β \alpha,\beta α,β及 P P P的定义是Taylor定理5.15那样的。对于 t ∈ [ a , b ] , t ≠ β t \in \lbrack a,b\rbrack,t \neq \beta t∈[a,b],t=β,定义
Q ( t ) = f ( t ) − f ( β ) t − β Q(t) = \frac{f(t) - f(\beta)}{t - \beta} Q(t)=t−βf(t)−f(β)
并把
f ( t ) − f ( β ) = ( t − β ) Q ( t ) f(t) - f(\beta) = (t - \beta)Q(t) f(t)−f(β)=(t−β)Q(t)
在 t = α t = \alpha t=α处微分 n − 1 n - 1 n−1次,就得到Taylor定理的下面这种形式:
f ( β ) = P ( β ) + Q ( n − 1 ) ( α ) ( n − 1 ) ! ( β − α ) n f(\beta) = P(\beta) + \frac{Q^{(n - 1)}(\alpha)}{(n - 1)!}(\beta - \alpha)^{n} f(β)=P(β)+(n−1)!Q(n−1)(α)(β−α)n
【证明】
由于
P ( β ) = ∑ k = 0 n − 1 f ( k ) ( α ) k ! ( β − α ) k P(\beta) = \sum_{k = 0}^{n - 1}{\frac{f^{(k)}(\alpha)}{k!}(\beta - \alpha)^{k}} P(β)=k=0∑n−1k!f(k)(α)(β−α)k
设
G n ( t ) = ∑ k = 0 n − 1 f ( k ) ( t ) k ! ( β − t ) k G_{n}(t) = \sum_{k = 0}^{n - 1}{\frac{f^{(k)}(t)}{k!}(\beta - t)^{k}} Gn(t)=k=0∑n−1k!f(k)(t)(β−t)k
H n ( t ) = G n ( t ) − f ( β ) ( β − t ) n H_{n}(t) = \frac{G_{n}(t) - f(\beta)}{(\beta - t)^{n}} Hn(t)=(β−t)nGn(t)−f(β)
原等式即
H n ( α ) = Q ( n − 1 ) ( α ) ( n − 1 ) ! H_{n}(\alpha) = \frac{Q^{(n - 1)}(\alpha)}{(n - 1)!} Hn(α)=(n−1)!Q(n−1)(α)
下面利用数学归纳法进行证明
H n ( t ) = Q ( n − 1 ) ( t ) ( n − 1 ) ! H_{n}(t) = \frac{Q^{(n - 1)}(t)}{(n - 1)!} Hn(t)=(n−1)!Q(n−1)(t)
- 当 n = 1 n = 1 n=1时显然成立
- 假定 n = m n = m n=m时成立
H m ( t ) = G m ( t ) − f ( β ) ( β − t ) m = Q ( m − 1 ) ( t ) ( m − 1 ) ! H_{m}(t) = \frac{G_{m}(t) - f(\beta)}{(\beta - t)^{m}} = \frac{Q^{(m - 1)}(t)}{(m - 1)!} Hm(t)=(β−t)mGm(t)−f(β)=(m−1)!Q(m−1)(t)
下面证明 n = m + 1 n = m + 1 n=m+1时也成立,两边对 t t t求导可得
[ H m ( t ) ] ′ = [ G m ( t ) ] ′ ( β − t ) m + m [ G m ( t ) − f ( β ) ] ( β − t ) m − 1 ( β − t ) 2 m \left\lbrack H_{m}(t) \right\rbrack^{'} = \frac{\left\lbrack G_{m}(t) \right\rbrack^{'}(\beta - t)^{m} + m\left\lbrack G_{m}(t) - f(\beta) \right\rbrack(\beta - t)^{m - 1}}{(\beta - t)^{2m}} [Hm(t)]′=(β−t)2m[Gm(t)]′(β−t)m+m[Gm(t)−f(β)](β−t)m−1
= [ G m ( t ) ] ′ ( β − t ) + m [ G m ( t ) − f ( β ) ] ( β − t ) m + 1 = \frac{\left\lbrack G_{m}(t) \right\rbrack^{'}(\beta - t) + m\left\lbrack G_{m}(t) - f(\beta) \right\rbrack}{(\beta - t)^{m + 1}} =(β−t)m+1[Gm(t)]′(β−t)+m[Gm(t)−f(β)]
其中
[ G m ( t ) ] ′ = ∑ k = 0 m − 1 [ f ( k ) ( t ) k ! ( β − t ) k ] ′ \left\lbrack G_{m}(t) \right\rbrack^{'} = \sum_{k = 0}^{m - 1}\left\lbrack \frac{f^{(k)}(t)}{k!}(\beta - t)^{k} \right\rbrack^{'} [Gm(t)]′=k=0∑m−1[k!f(k)(t)(β−t)k]′
= f ′ ( t ) + ∑ k = 1 m − 1 [ − f ( k ) ( t ) ( k − 1 ) ! ( β − t ) k − 1 + f ( k + 1 ) ( t ) k ! ( β − t ) k ] = f^{'}(t) + \sum_{k = 1}^{m - 1}\left\lbrack - \frac{f^{(k)}(t)}{(k - 1)!}(\beta - t)^{k - 1} + \frac{f^{(k + 1)}(t)}{k!}(\beta - t)^{k} \right\rbrack\ =f′(t)+k=1∑m−1[−(k−1)!f(k)(t)(β−t)k−1+k!f(k+1)(t)(β−t)k]
= ∑ k = 1 m − 1 [ − f ( k ) ( t ) ( k − 1 ) ! ( β − t ) k − 1 + f ( k ) ( t ) ( k − 1 ) ! ( β − t ) k − 1 ] + f ( m ) ( t ) ( m − 1 ) ! ( β − t ) m − 1 = \sum_{k = 1}^{m - 1}\left\lbrack - \frac{f^{(k)}(t)}{(k - 1)!}(\beta - t)^{k - 1} + \frac{f^{(k)}(t)}{(k - 1)!}(\beta - t)^{k - 1} \right\rbrack + \frac{f^{(m)}(t)}{(m - 1)!}(\beta - t)^{m - 1} =k=1∑m−1[−(k−1)!f(k)(t)(β−t)k−1+(k−1)!f(k)(t)(β−t)k−1]+(m−1)!f(m)(t)(β−t)m−1
= f ( m ) ( t ) ( m − 1 ) ! ( β − t ) m − 1 = \frac{f^{(m)}(t)}{(m - 1)!}(\beta - t)^{m - 1} =(m−1)!f(m)(t)(β−t)m−1
所以
[ H m ( t ) ] ′ = f ( m ) ( t ) ( m − 1 ) ! ( β − t ) m + m [ G m ( t ) − f ( β ) ] ( β − t ) m + 1 \left\lbrack H_{m}(t) \right\rbrack^{'} = \frac{\frac{f^{(m)}(t)}{(m - 1)!}(\beta - t)^{m} + m\left\lbrack G_{m}(t) - f(\beta) \right\rbrack}{(\beta - t)^{m + 1}} [Hm(t)]′=(β−t)m+1(m−1)!f(m)(t)(β−t)m+m[Gm(t)−f(β)]
= m [ f ( m ) ( t ) m ! ( β − t ) m + G m ( t ) − f ( β ) ] ( β − t ) m + 1 = \frac{m\left\lbrack \frac{f^{(m)}(t)}{m!}(\beta - t)^{m} + G_{m}(t) - f(\beta) \right\rbrack}{(\beta - t)^{m + 1}} =(β−t)m+1m[m!f(m)(t)(β−t)m+Gm(t)−f(β)]
= m [ G m + 1 ( t ) − f ( β ) ] ( β − t ) m + 1 = Q ( m ) ( t ) ( m − 1 ) ! = \frac{m\left\lbrack G_{m + 1}(t) - f(\beta) \right\rbrack}{(\beta - t)^{m + 1}} = \frac{Q^{(m)}(t)}{(m - 1)!} =(β−t)m+1m[Gm+1(t)−f(β)]=(m−1)!Q(m)(t)
即
G m + 1 ( t ) − f ( β ) ( β − t ) m + 1 = Q ( m ) ( t ) m ! \frac{G_{m + 1}(t) - f(\beta)}{(\beta - t)^{m + 1}} = \frac{Q^{(m)}(t)}{m!} (β−t)m+1Gm+1(t)−f(β)=m!Q(m)(t)
综上可得
H n ( t ) = Q ( n − 1 ) ( t ) ( n − 1 ) ! H_{n}(t) = \frac{Q^{(n - 1)}(t)}{(n - 1)!} Hn(t)=(n−1)!Q(n−1)(t)
将 t = α t = \alpha t=α代入可得
H n ( α ) = Q ( n − 1 ) ( α ) ( n − 1 ) ! H_{n}(\alpha) = \frac{Q^{(n - 1)}(\alpha)}{(n - 1)!} Hn(α)=(n−1)!Q(n−1)(α)
即
f ( β ) = P ( β ) + Q ( n − 1 ) ( α ) ( n − 1 ) ! ( β − α ) n f(\beta) = P(\beta) + \frac{Q^{(n - 1)}(\alpha)}{(n - 1)!}(\beta - \alpha)^{n} f(β)=P(β)+(n−1)!Q(n−1)(α)(β−α)n