向量叉乘总结

向量叉乘的记忆比较模糊,现在推荐三种向量叉乘的记忆方法(如下图所示):

向量的性质:(a+b)xc = axc + bxc;

        (a\widehat{i}+b\widehat{j}+c\widehat{k}) \times (d\widehat{i}+e\widehat{j}+f\widehat{k}) = (ae)\widehat{i} \times \widehat{j} + (af)\widehat{i} \times \widehat{k} + (bd)\widehat{j} \times \widehat{i} + (bf)\widehat{j} \times \widehat{k} + (cd)\widehat{k} \times \widehat{i} + (ce)\widehat{k} \times \widehat{j} = (ae)\widehat{k} - (af)\widehat{j} - (bd)\widehat{k} + (bf)\widehat{i} + (cd)\widehat{j} - (ce)\widehat{i} = (ce-bf)\widehat{i} + (cd-af)\widehat{j} + (ae - bd)\widehat{k}

1、向量的行列式展开法

2、轮换法(右手定则的循环不变性)

 3、矩阵向量的乘法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值