文献阅读(95)AutoML+剪枝

  • 题目:AMC: AutoML for Model Compression and Acceleration on Mobile Devices
  • 时间:2018
  • 会议:ECCV
  • 研究机构:MIT韩松
  • Github:https://github.com/mit-han-lab/amc-release

1 缩写 & 引用

  • AMC: AutoML for Model Compression

2 abstract & introduction & related work

过去的定点化方法主要是考hand-crafted heuristics和rule-based policies,这里用AutoML强化学习的方法来压缩网络,利用DDPG的方法,面对不同的需求提出了两种压缩策略,一个是看重latency的资源受限的研所,一个是看重精度不看重latency的accuracy-guaranted

在这里插入图片描述

相关工作:

  • 传统的压缩方法如量化和tensor分解和剪枝
  • NAS和AutoML:用网络砖和的方法加速或者用强化学习来channel selection

3 方法论

3.1 问题定义

剪枝可以分成两类:

  • 细粒度的剪枝:把权重中不重要的元素去掉,会导致结构不规则,不利已硬件实现
  • 结构化剪枝(粗粒度剪枝):网络结构规则,比如说一次剪几个通道

3.2 状态空间

用11个特征来标注一个状态
s t = s_t= st=
在这里插入图片描述
rest表示这层之后的网络层中的FLOP次数
reduced表示之前网络层已经减少的FLOP次数

3.3 动作空间

用连续的动作空间(0,1],可以更精确

3.4 DDPG agent

agent输入的是第t层的状态信息 s t s_t st,输出一个稀疏度 a t a_t at作为action,然后第t层就按照这个稀疏度进行特定的压缩算法如channel pruning;然后是第t+1层;等所有层都搞完了,在validation数据集中可以得到一个准确度

3.5 搜索方案

  • 资源受限型压缩:reward取决于Error(我猜测是精度下滑值),如果发现后面几层全部按照最激进的方式压缩都达不到压缩率,就放弃这个方案
  • 精度有保证的压缩:reward主要取决于error,稍微取决于计算量或者是参数量

4 实验结果

actor网络 μ \mu μ有两个隐藏层,每个有300unit
critic网络Q也有两个隐藏层,每个300unit

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值