- 题目:Two-Step Quantization for Low-bit Neural Networks
- 时间:2018
- 会议:CVPR
- 研究机构:中科大/阿里
- 参考博客:https://blog.csdn.net/qq_19784349/article/details/83931420
- 参考博客:https://blog.csdn.net/JachinMa/article/details/104431803
1 abstract & introduction
本篇论文的主要贡献:
- 将量化分成了两部分:code learning和transformation function learning,其实就是先量化特征图,再量化权重
- 对于code learning,采用了稀疏量化方法,特征图小于阈值的都为零
- 对于transformation function learning,转化成优化问题
2 方法
- 量化特征图:均匀量化,设置阈值
- 量化权重:转化成优化问题
转化成
- 题目:Fully Quantized Network for Object Detection
- 时间:2019
- 会议:CVPR
- 研究机构:商汤/上海科技大学
1 abstract & introduction
引用:
Quantization mimic: Towards very tiny cnn for object detection 2018
Quantization and training of neural networks for efficient integer-arithmetic-only inference 2018 CVPR
本篇论文的主要贡献:
- 研究了量化的过程中的困难
- 提出了一个硬件优化的量化scheme,将RetinaNet、Faster RCNN量化到4比特
2 方法
- 量化finetune阶段BN的更新会影响精度,这里停止finetune阶段BN的更新
- channel wise的量化,不同channel之间的scale是不一样的
- 特征图量化时利用滑动指数平均,避免特征图变化导致的不稳定
3 实验
针对COCO数据集下的Faster RCNN和RetinaNet