文献阅读(90)

  • 题目:Two-Step Quantization for Low-bit Neural Networks
  • 时间:2018
  • 会议:CVPR
  • 研究机构:中科大/阿里
  • 参考博客:https://blog.csdn.net/qq_19784349/article/details/83931420
  • 参考博客:https://blog.csdn.net/JachinMa/article/details/104431803

1 abstract & introduction

本篇论文的主要贡献:

  1. 将量化分成了两部分:code learning和transformation function learning,其实就是先量化特征图,再量化权重
  2. 对于code learning,采用了稀疏量化方法,特征图小于阈值的都为零
  3. 对于transformation function learning,转化成优化问题

2 方法

  • 量化特征图:均匀量化,设置阈值
  • 量化权重:转化成优化问题

在这里插入图片描述
转化成
在这里插入图片描述


  • 题目:Fully Quantized Network for Object Detection
  • 时间:2019
  • 会议:CVPR
  • 研究机构:商汤/上海科技大学

1 abstract & introduction

引用:
Quantization mimic: Towards very tiny cnn for object detection 2018
Quantization and training of neural networks for efficient integer-arithmetic-only inference 2018 CVPR

本篇论文的主要贡献:

  1. 研究了量化的过程中的困难
  2. 提出了一个硬件优化的量化scheme,将RetinaNet、Faster RCNN量化到4比特

2 方法

  1. 量化finetune阶段BN的更新会影响精度,这里停止finetune阶段BN的更新
  2. channel wise的量化,不同channel之间的scale是不一样的
  3. 特征图量化时利用滑动指数平均,避免特征图变化导致的不稳定

3 实验

针对COCO数据集下的Faster RCNN和RetinaNet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值