使用logisticregression回归算法训练部分,全部样本 预测良/恶性肿瘤

#导入pandas工具包,并且更名为pd
import pandas as pd
#调用pandas工具包read_csv函数,传入训练文件地址参数,获得返回数据存至变量df_train
df_train = pd.read_csv('../Datasets/Breast-Cancer/breast-cancer-train.csv')
#调用pandas工具包read_csv函数,传入测试文件地址参数,获得返回数据存至变量df_test
df_test = pd.read_csv('../Datasets/Breast-Cancer/breast-cancer-test.csv')  
print(df_train.head(5))
print(df_test.head(5))
#选取'clump thickness'与’cell size'作为特征,构建测试集中的正负分类样本
df_test_negative = df_test.loc[df_test['Type'] == 0][['Clump Thickness', 'Cell Size']]
df_test_positive = df_test.loc[df_test['Type'] == 1][['Clump Thickness', 'Cell Size']]  
print(df_test_negative.head())  
print(df_test_positive.head())    
import matplotlib.pyplot as plt  
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker = 'o', s=20, c='green')  
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'], marker = 'x', s=10, c='red')   
plt.xlabel('Clump Thickness')  
plt.ylabel('Cell Size')    
plt.show()   
import numpy as np
#利用numpy中的random函数随机采样直线的截距和系数
intercept = np.random.random([1])  
coef = np.random.random([2])    
lx = np.arange(0, 12)  
ly = (-intercept - lx * coef[0]) / coef[1]   
plt.plot(lx, ly, c='yellow')      
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'], marker = 'o', s=200, c='red')  
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'], marker = 'x', s=150, c='black')  
plt.xlabel('Clump Thickness')  
plt.ylabel('Cell Size')  
plt.show()    
from sklearn.linear_model import LogisticRegression  
lr = LogisticRegression()
#使用前10条训练样本学习直线的系数和截距
lr.fit(df_train[['Clump Thickness', 'Cell Size']][:10], df_train['Type'][:10])  
print ('Testing accuracy (10 training samples):', lr.score(df_test[['Clump Thickness', 'Cell Size']], df_test['Type']))   
intercept = lr.intercept_  
coef = lr.coef_[0, :]    
ly = (-intercept - lx * coef[0]) / coef[1]   
plt.plot(lx, ly, c='green')  
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'], marker = 'o', s=200, c='red')  
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'], marker = 'x', s=150, c='black')  
plt.xlabel('Clump Thickness')  
plt.ylabel('Cell Size')  
plt.show()    
lr = LogisticRegression()
#使用所有训练样本学习直线的系数和截距
lr.fit(df_train[['Clump Thickness', 'Cell Size']], df_train['Type'])  
print ('Testing accuracy (all training samples):', lr.score(df_test[['Clump Thickness', 'Cell Size']], df_test['Type']))    
intercept = lr.intercept_  
coef = lr.coef_[0, :]  
ly = (-intercept - lx * coef[0]) / coef[1]    
plt.plot(lx, ly, c='blue')  
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'], marker = 'o', s=200, c='red')  
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'], marker = 'x', s=150, c='black')  
plt.xlabel('Clump Thickness')  
plt.ylabel('Cell Size')  
plt.show()  

 

效果图如下:


 

 

 

 

 

 

 


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值