题目描述:
农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通。这样,Farmer John就有多个牧场了。
John想在农场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:
一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:
(15,15) (20,15)
D E
*-------*
| _/|
| _/ |
| _/ |
|/ |
*--------*-------*
A B C
(10,10) (15,10) (20,10)
这个牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。
这里是另一个牧场:
*F(30,15)
/
_/
_/
/
*------*
G H
(25,10) (30,10)
在目前的情景中,他刚好有两个牧场。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。
注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。
输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵:
A B C D E F G H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 1 0 0 0
C 0 1 0 0 1 0 0 0
D 0 1 0 0 1 0 0 0
E 0 1 1 1 0 0 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 1 0
其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。
输入文件至少包括两个不连通的牧区。
请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出那个最小可能的直径。
INPUT FORMAT:
第1行: 一个整数N (1 <= N <= 150), 表示牧区数
第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的。
第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。
OUTPUT FORMAT:
只有一行,包括一个实数,表示所求直径。数字保留六位小数。
SAMPLE INPUT
8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010
SAMPLE OUTPUT
22.071068
解题思路:
先求出各条边的长度保存到邻接矩阵cost[i][j]中,用floyd算法求出各牧区到其相连牧区的最短路径d[i][j] (两个矩阵可以合并为一个),然后用数组Maxmin来保存其他相邻牧区到该牧区的最大距离,如果是其他牧场的则为INF,无需特殊处理。所求的那条最短边通过式子res=min(res,Maxmin[i]+Maxmin[j]+length(i,j))即可。
注意:还要记得要和原来的单个牧场的直径比较,有可能原来牧场的直径比所求的res大,要判断一下!
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define INF 99999999
int N;
typedef struct A{
int x,y;
}A;
A a[160];
char G[160][160];
double d[160][160];
double Minmax[160];
double calcular(A a,A b){//计算两点距离
return sqrt(pow(abs(a.x-b.x),2)+pow(abs(a.y-b.y),2));
}
double min(double a,double b){
return a<b?a:b;
}
double max(double a,double b){
return a>b?a:b;
}
void floyd(){//floyd算法,求任意两点最短路径
for(int k=0;k<N;k++){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
}
}
}
void getOwnLongest(){//保存各个牧场中其他牧区到自己牧区的最大值
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
if(d[i][j]!=INF)
Minmax[i]=max(Minmax[i],d[i][j]);
}
}
}
double getAnswer(){
double answer=INF;
double Oldlongest=0;
for(int i=0;i<N;i++){//有可能单个牧场的直径比新的大,判断一下
Oldlongest=max(Oldlongest,Minmax[i]);
}
for(int i=0;i<N;i++){//计算加上路径后的最短距离
for(int j=0;j<N;j++){
if(d[i][j]==INF)
answer=min(answer,Minmax[i]+Minmax[j]+calcular(a[i],a[j]));
}
}
answer=max(Oldlongest,answer);
return answer;
}
int main(){
FILE *fin = fopen ("cowtour.in", "r");
FILE *fout = fopen ("cowtour.out", "w");
fscanf(fin,"%d",&N);
for(int i=0;i<N;i++){
fscanf(fin,"%d%d",&a[i].x,&a[i].y);
}
fscanf(fin,"\n");
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
if(i==j)d[i][j]=0;
else d[i][j]=INF;
}
}
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
fscanf(fin,"%c",&G[i][j]);
if(G[i][j]-'0')d[i][j]=calcular(a[i],a[j]);
}
fscanf(fin,"\n");
}
floyd();
getOwnLongest();
fprintf(fout,"%8lf\n",getAnswer());
exit(0);
}