【算法】尺取法——快速求解取连续子序列问题

算法描述

这个算法通过反复推进开头和结尾,可以在O(n)的线性时间内解决连续子序列问题。

算法模拟

比如当前pre=i,pro=j,temp=a[i]+a[j]。
1.如果temp-a[i] > M,则推进pre,pre++,temp-=a[i]
重复1直到temp-a[i] < M
2.如果temp-a[i] < M,则 i—j 为以j为终点最靠近M的值
挑战程序设计大赛图

void solve(){
    int temp=0,pre=0;
    for(int i=0;i<N;i++){
        temp+=d[i];
        while(temp>=M){
            print(pre,i);//这里用于观察前后变化
            if(temp-d[pre]<M){
                break;
            }
            else{
                temp-=d[pre];
                pre++;
            }
        }
    }
} 

测试代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#define INF 99999999
using namespace std;
int d[]={5,1,3,5,9,7,4,9,2,8},N=10,M=15;

void print(int a,int b){
    for(int i=0;i<N;i++)
    if(i>=a&&i<=b)printf("%d ",d[i]);
    else printf("  ");
    printf("\n");
}
void solve(){
    int temp=0,pre=0;
    for(int i=0;i<N;i++){
        temp+=d[i];
        while(temp>=M){
            print(pre,i);
            if(temp-d[pre]<M){
                break;
            }
            else{
                temp-=d[pre];
                pre++;
            }
        }
    }
} 
int main(){
    solve();
    return 0;
}


阅读更多
文章标签: 算法 尺取法
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭