Abacus.AI&微软最新《神经体系结构搜索NAS: 基础与趋势》教程

本文提供了一个详细的NAS(神经结构搜索)教程,概述了搜索空间、黑箱优化、权重共享、加速技术和应用。NAS在过去两年迅速发展,超越了人工设计的神经网络结构。教程涵盖了基本原理、前沿趋势,并总结了最佳实践和未来方向,旨在为深度学习从业者提供一个有组织且易于理解的资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

274c10ed64b6772d86ec0cbc84ee1a1e.png

来源:专知
本文为教程介绍,建议阅读5分钟在本教程中,我们将提供一个有组织且易于遵循的NAS指南。

fe675e71bc81954b15ce1e064f474077.jpeg

在过去的十年中,深度学习的进步导致了从计算机视觉到自然语言理解到语音识别等多个领域的突破。虽然深度学习的兴起有很多因素,但高性能神经结构的设计对其成功至关重要。神经结构搜索(Neural architecture search, NAS)是对给定任务的结构进行自动化设计的过程,在过去的两年里,它得到了飞速的发展,发表了1200多篇论文,导致人工设计的结构被自动设计的结构所超越。在本教程中,我们将提供一个有组织且易于遵循的NAS指南。我们调研了搜索空间、黑箱优化技术、权重共享技术、加速技术、扩展和应用。对于每个主题,除了前沿趋势之外,我们还仔细描述了基本原理。我们通过描述NAS研究的最佳实践、资源和有前景的未来方向来总结。

https://crwhite.ml/

ff21a8583398d6566e87100da700b8e9.jpeg

1c1fe7c568637aa926b0a1495eb32638.jpeg

b4ed9a73a44102887d509cb3841504dd.jpeg

9f3e746f2300956781f96ec4ace2a663.jpeg

6c2c569a262cf032490babe497af6613.jpeg

52d468880338523afc20a932fe204d30.jpeg

1f5304367214c9313e8281ee1fc6cbf2.jpeg

1f0e9e97e8414a3a35f12c816b2d9355.jpeg

7507703c7f97fdcdcf007ad9d1d5b870.jpeg

bc326ce0d20ee0d522a7f3c174f93d59.jpeg

b5ba8079077c3bca0ff3c28e0935d686.png

891b67514786a6f001668eaa0347607f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值