从模型到算法-目录

出于对数据分析、数据挖掘方面的兴趣,以及在未来工作上的帮助。本博打算多看一些相关书籍与博客,总结及翻译相应的知识点。使得自己对这块的知识越来越了解,总结的文章初步分为以下章节:

第一章,EDA-数据探索

第二章,线性回归与模型诊断

第三章,从线性概率模型到广义线性模型

第四章,模型中特征子集的选择
第五章,维度归约
第六章,数据缺失与不平衡的处理

第七章,广义相加模型(GAMs)
第八章,Longitudinal Data或Panel Data模型
第九章,监督学习
第十章,基于树的方法

第十一章,从感知机到支持向量机
第十二章,从感知机到神经网络
第十三章,从神经网络到深度学习
第十四章,语音特征
第十五章,图像特征
第十六章,文本特征
第十七章,非监督学习

  • 第17章-非监督学习(1)-基于划分的聚类
  • 第17章-非监督学习(2)-基于层级的聚类
  • 第17章-非监督学习(3)-基于模型的聚类
  • 第17章-非监督学习(4)-基于网格的聚类
  • 第17章-非监督学习(5)-基于密度的聚类
  • 第17章-非监督学习(6)-基于图的聚类
  • 第17章-非监督学习(7)-基于模糊理论的聚类

第十八章,异常检测
第十九章,推荐系统
第二十章,图模型
第二十一章,随机过程
第二十二章,时间序列

以此博客鼓励自己,继续学习,fighting…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值