出于对数据分析、数据挖掘方面的兴趣,以及在未来工作上的帮助。本博打算多看一些相关书籍与博客,总结及翻译相应的知识点。使得自己对这块的知识越来越了解,总结的文章初步分为以下章节:
第一章,EDA-数据探索
- 第1章-数据探索(1)-数据预处理
- 第1章-数据探索(2)-数据预处理之Python实现
- 第1章-数据探索(3)-数据预处理之R实现
- 第1章-数据探索(4)-数据的统计分析
- 第1章-数据探索(5)-数据的统计分析之Python实现
- 第1章-数据探索(6)-数据的统计分析之R实现
第二章,线性回归与模型诊断
- 第2章-回归模型(1)-线性回归模型与估计
- 第2章-回归模型(2)-模型诊断
- 第2章-回归模型(3)-模型筛选
- 第2章-回归模型(4)-回归模型之Python实现
- 第2章-回归模型(5)-回归模型之R实现
第三章,从线性概率模型到广义线性模型
- 第3章-线性概率模型(1)-logistics/probit模型
- 第3章-线性概率模型(2)-推广至广义线性模型
- 第3章-线性概率模型(3)-Python实现
- 第3章-线性概率模型(4)-R实现
第四章,模型中特征子集的选择
第五章,维度归约
第六章,数据缺失与不平衡的处理
- 第6章-数据缺失与不平衡的处理(1)-数据缺失
- 第6章-数据缺失与不平衡的处理(2)-数据不平衡
第七章,广义相加模型(GAMs)
第八章,Longitudinal Data或Panel Data模型
第九章,监督学习
第十章,基于树的方法
- 第10章-基于树的方法(1)-生成树
- 第10章-基于树的方法(2)-树的剪枝
- 第10章-基于树的方法(3)-树的改进-集成方法
- 第10章-基于树的方法(4)-Python实现
- 第10章-基于树的方法(5)-R实现
第十一章,从感知机到支持向量机
第十二章,从感知机到神经网络
第十三章,从神经网络到深度学习
第十四章,语音特征
第十五章,图像特征
第十六章,文本特征
第十七章,非监督学习
- 第17章-非监督学习(1)-基于划分的聚类
- 第17章-非监督学习(2)-基于层级的聚类
- 第17章-非监督学习(3)-基于模型的聚类
- 第17章-非监督学习(4)-基于网格的聚类
- 第17章-非监督学习(5)-基于密度的聚类
- 第17章-非监督学习(6)-基于图的聚类
- 第17章-非监督学习(7)-基于模糊理论的聚类
第十八章,异常检测
第十九章,推荐系统
第二十章,图模型
第二十一章,随机过程
第二十二章,时间序列
以此博客鼓励自己,继续学习,fighting…