浅谈大模型评估

💡 本文会带给你

  1. 大模型常用的评估方法
  2. 有哪些重要的评估指标
  3. 有哪些主流的开源评估数据
  4. 怎样使用Opencompass进行评估

大模型评估测试是验证模型性能、可靠性和适用性的关键步骤。大模型有客观评价和主管评价。客观评价的场景主要与法律和医疗类似的业务。

一. 评估方法

1. 自动化测试

程序脚本实现

In [ ]:

#python
#示例:使用评估框架测试模型
from evaluate import load
bertscore = load("bertscore")
results = bertscore.compute(predictions=model_outputs, references=ground_truths, lang="zh")

2. 人工评估

设计评分表(1-5分)评估: 相关性
事实准确性
语言流畅度
安全性

二. 评估框架

OpenCompass 是上海人工智能实验室推出的大模型评测体系,支持对多种大模型进行全方位能力评估。旨在为机器学习和自然语言处理领域提供多功能、易于使用的工具和框架。其中包含的多个开源模型和开源数据集(BenchMarks),方便进行模型的效果评测。

1. 生成式大模型的评估指标

核心评估指标

OpenCompass支持以下主要评估指标,覆盖生成式大模型的多样化需求:

准确率(Accuracy):用于选择题或分类任务,通过比对生成结果与标准答案计算正确率。在OpenCompass中通过metric=accuracy配置

困惑度(Perplexity, PPL):衡量模型对候选答案的预测能力,适用于选择题评估。需使用ppl类型的数据集配置(如ceval_ppl)

生成质量(GEN):通过文本生成结果提取答案,需结合后处理脚本解析输出。使用gen类型的数据集(如ceval_gen),配置metric=gen并指定后处理规则

ROUGE/LCS:用于文本生成任务的相似度评估,需安装rouge==1.0.1依赖,并在数据配置中设置metric=rouge

条件对数概率(CLP):结合上下文计算答案的条件概率,适用于复杂推理任务,需在模型配置中启用use_logprob=Tru

2. 支持的开源评估数据集及使用差异

2.1. 主流开源数据集

OpenCompass内置超过70个数据集,覆盖五大能力维度:

知识类:C-Eval(中文考试题&#x

### 大型模型使用技巧与最佳实践 #### 优化资源利用 为了有效管理计算资源,在部署大型模型时应考虑采用分布式训练方法。通过将数据集分割并分配给多个节点处理,可以显著减少单次迭代所需时间[^3]。 #### 数据预处理策略 对于输入到大型模型的数据而言,合理的预处理至关重要。这不仅涉及常规的清理工作如去除噪声、填补缺失值等操作;还包括特征工程方面的工作——比如应用标准化(normalization)或归一化(feature scaling),从而确保不同维度间量级一致以便于算法更好地收敛学习规律。 #### 模型评估与验证技术 构建起有效的评价体系来衡量所开发出来的复杂架构性能表现同样不可忽视。交叉验证(cross-validation)是一种常用手段,它允许更全面地测试泛化能力而不仅仅依赖单一划分方式下的结果。此外还有A/B Testing可用于比较新旧版本之间的差异效果。 #### 安全措施实施建议 鉴于敏感信息可能存在于用于训练的大规模语料库当中,因此有必要采取适当的安全控制机制保护这些资产免受未授权访问威胁。AWS IAM政策提供了灵活精细的身份认证及权限授予方案,有助于实现这一目标的同时也便于团队协作管理云上资源[^1]。 ```python import boto3 iam = boto3.client('iam') response = iam.create_policy( PolicyName='S3AccessPolicy', PolicyDocument='{...}' # JSON policy document defining permissions ) print(response['Policy']['Arn']) ``` #### 性能监控与审计日志记录 持续跟踪应用程序运行状态及其对外部存储服务(例如Amazon S3)请求情况非常重要。启用详细的访问模式分析可以帮助识别潜在风险点以及优化成本结构的机会所在。同时定期审查变更历史也有利于维护系统的稳定性和透明度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值