最近在看机器学习的书籍,简单总结一下:
1、机器学习是研究学习算法的,包括神经网络、决策树、SVM等。
2、学习算法的结果是获得模型,应用于预测等。如果预测的离散值,称为分类;如果预测的是连续值,称为回归。
3、当学习过程中,存在假设空间时,即有多个模型对应于样本,需要使用归纳偏好,获得最终模型。
4、每个样本对应有标记(输出)的学习称为监督学习,否则为无监督学习。
5、机器学习是从特殊到一般的泛化,使用样本数据推出一般规律(模型),泛化能力越强,越能代表一般规律。
最近在看机器学习的书籍,简单总结一下:
1、机器学习是研究学习算法的,包括神经网络、决策树、SVM等。
2、学习算法的结果是获得模型,应用于预测等。如果预测的离散值,称为分类;如果预测的是连续值,称为回归。
3、当学习过程中,存在假设空间时,即有多个模型对应于样本,需要使用归纳偏好,获得最终模型。
4、每个样本对应有标记(输出)的学习称为监督学习,否则为无监督学习。
5、机器学习是从特殊到一般的泛化,使用样本数据推出一般规律(模型),泛化能力越强,越能代表一般规律。