关于机器学习的简单认识

最近在看机器学习的书籍,简单总结一下:

1、机器学习是研究学习算法的,包括神经网络、决策树、SVM等。

2、学习算法的结果是获得模型,应用于预测等。如果预测的离散值,称为分类;如果预测的是连续值,称为回归。

3、当学习过程中,存在假设空间时,即有多个模型对应于样本,需要使用归纳偏好,获得最终模型。

4、每个样本对应有标记(输出)的学习称为监督学习,否则为无监督学习。

5、机器学习是从特殊到一般的泛化,使用样本数据推出一般规律(模型),泛化能力越强,越能代表一般规律。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值