论文笔记:Deep Patient:An Unsupervised Representation to Predict the Future of Patients rom the Electron

本文介绍DeepPatient,一种从电子健康记录中无监督学习患者未来状况预测的表示方法。总体流程包括数据提取与预处理、自动编码器学习特征表示及特征应用于具体任务。采用堆叠自编码器进行特征学习,通过encoder和decoder实现参数学习。
摘要由CSDN通过智能技术生成

Deep Patient:An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

  1. 总体流程
    在这里插入图片描述
    A. 提取数据,数据预处理成向量
    B. autodecoder学习特征表示
    C. 学到的特征用于具体任务
  2. 特征学习
    在这里插入图片描述
    使用SDA
    (1)encoder
    在这里插入图片描述
    (2)decoder
    在这里插入图片描述
    目标
    在这里插入图片描述
    参数学习
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值