监督式学习

算法模型分为两类:
    一类是没有标签的非监督式学习,另一类是带有标签数据的监督室学习。
    监督室学习的主要目的是利用模型对未知数据做预测。监督式学习根据根据数据的不同分为两类:若标签变量表示类别(变量时离散的),则成为分类;若标签变量表示数值(变量时连续的),则成为回归。一方面,通过数据分段,将连续标签变量转换为离散标签变量,那么回归问题就变成分类问题。另一方面,大多数分类模型都是先对数据属于某一类别的概率做回归,在基于回归结果得到最终的分类预测。分类模型的本质是回归模型。
监督室学习有很多,比较典型的有支持向量学习机、决策树和树的集成。
    支持向量学习机的分类效果很好,使用范围也很广,曾一度是机器学习的主流方向。
    决策树模型的建模思路是模拟人在现实生活中做决策的过程,因而模型非常容易理解。
    树的集成建立在决策树的基础上,通过使用集成方法提升的预测效果,这其中包括随机森林哥和GBTs。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值