1. DySample介绍
1.1 摘要:特征上采样是许多现代卷积网络体系结构(如特征金字塔)中的关键操作。它的设计对于密集预测任务(如对象检测和语义/实例分割)至关重要。在本文中,我们提出了一个通用、轻量级、高效的特征重组算子CARAFE来实现这一目标.CARAFE有几个吸引人的特性:(1)大视场。与以往的研究(如双线性插值)仅利用子像素邻域不同,CARAFE能够在较大的感受野范围内聚集上下文信息。(2)内容感知处理。“CARAFE支持特定于实例的内容感知处理,从而动态生成自适应内核,而不是对所有样本使用固定内核(例如,去卷积)。(3)轻量级且计算速度快。CARAFE引入的计算开销很小,并且可以容易地集成到现代网络架构中。我们在目标检测、实例/语义分割和修复方面对标准基准进行了全面的评估。CARAFE在所有任务中显示了一致且实质性的增益(分别为1.2% AP、1.3% AP、1.8% mIoU、1.1dB),而计算开销可忽略不计。它有很大的潜力作为未来研究的一个强有力的基石。
官方论文地址: