YOLOv11改进 | 上采样篇 | YOLOv11引入CARAFE上采样

1. DySample介绍

1.1  摘要:特征上采样是许多现代卷积网络体系结构(如特征金字塔)中的关键操作。它的设计对于密集预测任务(如对象检测和语义/实例分割)至关重要。在本文中,我们提出了一个通用、轻量级、高效的特征重组算子CARAFE来实现这一目标.CARAFE有几个吸引人的特性:(1)大视场。与以往的研究(如双线性插值)仅利用子像素邻域不同,CARAFE能够在较大的感受野范围内聚集上下文信息。(2)内容感知处理。“CARAFE支持特定于实例的内容感知处理,从而动态生成自适应内核,而不是对所有样本使用固定内核(例如,去卷积)。(3)轻量级且计算速度快。CARAFE引入的计算开销很小,并且可以容易地集成到现代网络架构中。我们在目标检测、实例/语义分割和修复方面对标准基准进行了全面的评估。CARAFE在所有任务中显示了一致且实质性的增益(分别为1.2% AP、1.3% AP、1.8% mIoU、1.1dB),而计算开销可忽略不计。它有很大的潜力作为未来研究的一个强有力的基石。

官方论文地址:

要将Carafe上采样加入YOLOv8,可以按照以下步骤进行: 1. 在ultralytics/models/v8文件夹下新建一个yolov8-CARAFE.yaml文件。 2. 将Carafe的代码添加到ultralytics/nn/modules.py文件末尾。 3. 将Carafe这个类的名字加入到ultralytics/nn/tasks.py中。 4. 修改yolov8-CARAFE.yaml文件,使用Carafe构建上采样模块。 5. 修改ultralytics/yolo/cfg/default.yaml文件的'--model'默认参数,或者直接使用指令来开始训练。 这样,就可以将Carafe上采样加入YOLOv8模型中,以提升目标检测、实例分割等任务的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [特征融合 | YOLOv8 应用轻量级通用上采样算子CARAFE | 《特征的内容感知重组》](https://blog.csdn.net/weixin_43694096/article/details/130332130)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Carafe: ConditionAl RAndom Fields, Etc.-开源](https://download.csdn.net/download/weixin_42135773/18200809)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [YOLOV5/V7/V8改进:添加CARAFE: 轻量级通用上采样算子](https://blog.csdn.net/m0_51530640/article/details/130300963)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值