(理解)线性回归, 逻辑回归和线性分类器,Softmax回归。

线性回归, 逻辑回归和线性分类器

线性回归, Linear Regression
逻辑回归, Logistic Regression
线性分类器, Linear Classifier
逻辑分类器, Logistic Classifier. 注意, 这个名词是我在文章中为了方便说明问题造出来的.



线性回归可以看作一个Perceptron, 激活函数是identical, 即 f(x)=x f(x)=x.
将逻辑回归也可以看作一个Perceptron, 不同的是使用了sigmoid激活函数.

一般的说法是, 线性回归是真正的回归, 而逻辑回归是一个分类器, 不是真回归. 这算是一个约定俗成的一个失误性命名吗? NO. 逻辑回归的主体还是回归操作: 回归对象是sigmoid函数, 它将输入映射为一个处于0到1之间的小数. 得到这个0到1之间的小数之后人为将其解读成概率, 然后根据事先设定的阈值进行分类. 回归操作的工作量在整个Logistic Regression中保守估计也得超过 99% 99%. 以这个算法的主体---逻辑回归来命名算法是无可厚非的. 当然, 若一定要叫Logistic Classifier也是可以的, 只不过大家都不这么叫而已.

已经有了Logistical Regression, Logistic Classifier, Linear Regression, 很自然的就能想到 Linear Classifier. Logistic Classifier是在Logistic Regression之后加了一步. 虽然Linear Classifier 与Linear Regression 之间没有这种关系, 但它们在形式上还是很相似的:


Logistic Regression(这里特指回归操作):

f(x)=sigmoid(wTx+b)

Logistic Classifier:

y={11f(x)0.5f(x)<0.5



Linear Regression:
f(x)=wTx+b
Linear Classifier:
y={11f(x)0f(x)<0



是不是很具有迷惑性?
可这只是表面现象, 因为Linear Classifier里的 f(x) f(x)并不是通过Linear Regression得到的. 说到这里就得给Linear Classifier下一个定义了. 简单的讲,  Linear Classifier就是以超平面(Hyperplane)为决策边界(Decision Boundary)的分类器. 常见的Linear Classifier有Logistic Regression, SVM, Perceptron. 很明显, 这些个分类算法都不是通过Linear Regression 得到自己的分类超平面的。逻辑回归也属于线性分类器,其本质是根据wTx+b的大小来对数据类别进行划分,wTx+b即是代表一个超平面,逻辑回归将wTx+b的值映射到0-1区间,
这就可以反映为属于第1类的概率,可以用log函数来表示损失函数。

还有一类经常引起争论的问题: 数据集 D D在原始输入空间 χ χ上是线性不可分的, 但将其映射到另外一个空间, 称为特征空间 H H上又成了线性可分的. 例如 χH:x(x,x2,x3) χ→H:x→(x,x2,x3), 判定函数为

f(x)={11,x+x2+x30,x+x2+x3<0 f(x)={1,x+x2+x3≥0−1,x+x2+x3<0

问这个分类器是线性还是非线性的? (其实是使用了kernel)
我个人的看法是: 在特征空间 H H上是线性的, 在原始输入空间 χ χ上是非线性的. 如果不指明是哪个空间, 默认为原始输入空间, 为非线性的.

知乎:Logistic Regression是一个单层感知器(Single-Layer Perceptron,或者说单层神经网络),只能对线性可分的数据进行分类。
Back Propagation Network是多层感知器(Multi-Layer Perceptron),可以学到任意复杂的函数。

你把LR分类器一层一层套起来就变成神经网络了……

Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  \textstyle y  可以取两个以上的值,只是Softmax输出值是归一化的概率值。

代价函数为:

\begin{align}J(\theta) = - \frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k}  1\left\{y^{(i)} = j\right\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)} }}\right]\end{align}

Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的 \textstyle k 个可能值进行了累加。注意在Softmax回归中将 \textstyle x 分类为类别 \textstyle j 的概率为:

p(y^{(i)} = j | x^{(i)} ; \theta) = \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)}} }.




  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值