论文阅读笔记:Relational Learning via Collective Matrix Factorization

论文:Relational Learning via Collective Matrix Factorization / 通过协同矩阵分解进行关系学习
作者:Ajit P. Singh, Geoffrey J. Gordon
发表刊物:KDD
发表年度:2008
下载地址:https://doi.org/10.1145/1401890.1401969

CMF模型是评分预测、冷启动推荐等推荐系统相关研究中经常对比的一个经典基线,其基本思想是在做关系学习任务时,可以利用与待预测的关系相关的其他关系数据来改进预测性能,以电影评分预测为例,传统的做法是基于用户-电影评分矩阵做预测,现在假设我们有用户电影评分数据,此外还有电影流派数据,那么我们在做评分预测时效果会更好,为什么呢?因为不同用户可能会对不同流派的电影有不同的打分,即电影流派这一关系数据与电影评分预测这一关系学习任务相关联,我们就可以用电影的流派数据来改进预测性能。

文章中给出了矩阵分解算法的一般性定义:

MF模型的公式化表示为:

CMF模型示意图如下所示:

CMF模型的公式化定义为:

 作者提供了CMF模型的源代码:http://www.cs.cmu.edu/~ajit/cmf/

作者在Github上找到一个Python版的CMF模型包,该包包含了CMF相关的一些矩阵分解算法,地址为:

https://github.com/david-cortes/cmfrec

对应论文地址为:Cold-start recommendations in Collective Matrix Factorization

该包对应文档中给出了CMF模型在Movielens 1M数据集上做热启动推荐和冷启动推荐的效果,地址为:

Collaborative filtering with side information

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页