1、vLLM 核心特性
vLLM(Vectorized Large Language Model Serving System)是由加州大学伯克利分校团队研发的高性能大语言模型推理引擎,通过创新的内存管理与计算优化技术,显著提升服务吞吐量与资源利用率。其核心优势包括:
-
内存优化:采用PagedAttention技术,实现GPU显存高效管理,支持超长上下文处理。
-
分布式推理:支持多机多卡并行计算,灵活适配不同规模硬件资源。
-
场景覆盖:适用于高并发在线服务、边缘计算及低成本推理场景。
-
多框架兼容:支持HuggingFace、ModelScope等主流模型库。
2、ModelScope 模型生态
ModelScope 是阿里巴巴推出的开源模型即服务(MaaS)平台,集成多领域前沿AI模型,提供便捷的API接口与工具链,助力开发者快速构建AI应用。
核心功能:
-
模型仓库:覆盖NLP、CV、语音等领域的预训练模型。
-
快速部署:支持本地化模型下载与云端API调用。
-
开发友好:提供Python SDK及丰富的文档支持。
官方网站:https://modelscope.cn/models
安装ModelScope
pip install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple
创建存储目录
mkdir -p /data/Qwen/models/Qwen-32B
下载QwQ-32B模型
modelscope download --local_dir /data/Qwen/models/Qwen-32B --model Qwen/QWQ-32B
3、启用与优化NVIDIA GPU
更新软件包列表
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
配置NVIDIA容器运行时
sudo nvidia-ctk runtime configure --runtime=docker
重启服务
sudo systemctl daemon-reload && sudo systemctl restart docker
4. 运行vLLM容器
拉取镜像
docker pull docker.1panel.live/vllm/vllm-openai
启动vLLM容器
docker run -itd --restart=always --name Qwen-32B \
-v /data/Qwen:/data \
-p 18005:8000 \
--gpus '"device=1,2,3,4"' \
--ipc=host --shm-size=16g \
vllm/vllm-openai:latest \
--dtype bfloat16 \
--served-model-name Qwen-32B \
--model "/data/models/Qwen-32B" \
--tensor-parallel-size 4 \
--gpu-memory-utilization 0.95 \
--max-model-len 81920 \
--api-key token-abc123 \
--enforce-eager
Docker命令参数解析详解
-
-i(interactive):允许用户与容器进行交互,即使容器不在前台运行。用户可以通过
docker logs
或docker attach
命令查看容器的输出日志 -
-t(tty):分配一个伪TTY(虚拟终端)到容器,模拟终端环境。
-
-d(detach:在后台运行容器,不占用当前终端。
-
--restart=always:设置容器在主机重启或容器退出后自动重启。
-
--name Qwen-32B:为容器指定一个唯一的名称。
-
-v /data/Qwen:/data:将宿主机上的
/data/Qwen
目录挂载到容器内的/data
目录。避免容器重启或删除而导致的数据丢失问题。 -
-p 18005:8000:将宿主机的18005端口映射到容器内的8000端口。
-
--gpus '"device=1,2,3,4"':指定容器使用宿主机上的GPU设备1、2、3、4。
-
--ipc=host:共享宿主机的IPC(进程间通信)命名空间,允许容器与宿主机的进程进行通信。
VLLM模型启动参数
-
--dtype bfloat16:指定使用bfloat16(Brain Floating Point 16)进行模型计算。
-
--served-model-name Qwen-32B:设置模型的服务名称为“Qwen-32B”,用于API请求时的模型标识。
-
--model "/data/models/Qwen-32B":指定模型文件的路径为容器内的
/data/models/Qwen-32B
。 -
--tensor-parallel-size 4:设置张量并行的规模为4,对应使用4块GPU进行模型并行计算。
-
--gpu-memory-utilization 0.85:设置GPU内存使用率为85%,预留15%的内存空间,防止因内存溢出导致的程序崩溃。
-
--max-model-len 81920:指定模型的最大上下文长度为81920 Token。模型在单次推理中可以处理的输入和输出的总Token数不超过81920个。
-
--api-key token-abc123:设置API访问密钥为“token-abc123”,调用API时需要在请求头中提供此密钥。
-
--enforce-eager:启用Eager执行模式,确保模型推理时逐层计算,避免由于延迟执行可能引发的内存问题。
5. Open Web UI部署
拉取open-webui镜像
docker pull ghcr.nju.edu.cn/open-webui/open-webui:main
启动Open Web UI
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway \
-v /data/open-webui:/app/backend/data \
--name open-webui --restart always ghcr.nju.edu.cn/open-webui/open-webui:main
访问Web界面
浏览器访问:http://localhost:3000
管理员面板--外部链接--新建模型连接
模型ID
留空即可自动从/v1/models
接口中获取,开启新对面默认选择DeepSeek-R1-Distill-Llama-70B模型
开启新对话