vLLM与ModelScope生态深度整合:大语言模型高效部署与推理优化实战

1、vLLM 核心特性

vLLM(Vectorized Large Language Model Serving System)是由加州大学伯克利分校团队研发的高性能大语言模型推理引擎,通过创新的内存管理与计算优化技术,显著提升服务吞吐量与资源利用率。其核心优势包括:

  • 内存优化:采用PagedAttention技术,实现GPU显存高效管理,支持超长上下文处理。

  • 分布式推理:支持多机多卡并行计算,灵活适配不同规模硬件资源。

  • 场景覆盖:适用于高并发在线服务、边缘计算及低成本推理场景。

  • 多框架兼容:支持HuggingFace、ModelScope等主流模型库。

2、ModelScope 模型生态

ModelScope 是阿里巴巴推出的开源模型即服务(MaaS)平台,集成多领域前沿AI模型,提供便捷的API接口与工具链,助力开发者快速构建AI应用。

核心功能

  • 模型仓库:覆盖NLP、CV、语音等领域的预训练模型。

  • 快速部署:支持本地化模型下载与云端API调用。

  • 开发友好:提供Python SDK及丰富的文档支持。

官方网站:https://modelscope.cn/models

安装ModelScope

pip install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple

创建存储目录

mkdir -p /data/Qwen/models/Qwen-32B

下载QwQ-32B模型

modelscope download --local_dir /data/Qwen/models/Qwen-32B --model Qwen/QWQ-32B
3、启用与优化NVIDIA GPU

更新软件包列表

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit

配置NVIDIA容器运行时

sudo nvidia-ctk runtime configure --runtime=docker

重启服务

sudo systemctl daemon-reload && sudo systemctl restart docker
4. 运行vLLM容器

拉取镜像

docker pull docker.1panel.live/vllm/vllm-openai

启动vLLM容器

docker run -itd --restart=always --name Qwen-32B \  -v /data/Qwen:/data \  -p 18005:8000 \  --gpus '"device=1,2,3,4"' \  --ipc=host --shm-size=16g \  vllm/vllm-openai:latest \  --dtype bfloat16 \  --served-model-name Qwen-32B \  --model "/data/models/Qwen-32B" \  --tensor-parallel-size 4 \  --gpu-memory-utilization 0.95 \  --max-model-len 81920 \  --api-key token-abc123 \  --enforce-eager

Docker命令参数解析详解

  • -i(interactive):允许用户与容器进行交互,即使容器不在前台运行。用户可以通过docker logsdocker attach命令查看容器的输出日志

  • -t(tty):分配一个伪TTY(虚拟终端)到容器,模拟终端环境。

  • -d(detach:在后台运行容器,不占用当前终端。

  • --restart=always:设置容器在主机重启或容器退出后自动重启。

  • --name Qwen-32B:为容器指定一个唯一的名称。

  • -v /data/Qwen:/data:将宿主机上的/data/Qwen目录挂载到容器内的/data目录。避免容器重启或删除而导致的数据丢失问题。

  • -p 18005:8000:将宿主机的18005端口映射到容器内的8000端口。

  • --gpus '"device=1,2,3,4"':指定容器使用宿主机上的GPU设备1、2、3、4。

  • --ipc=host:共享宿主机的IPC(进程间通信)命名空间,允许容器与宿主机的进程进行通信。

VLLM模型启动参数

  • --dtype bfloat16:指定使用bfloat16(Brain Floating Point 16)进行模型计算。

  • --served-model-name Qwen-32B:设置模型的服务名称为“Qwen-32B”,用于API请求时的模型标识。

  • --model "/data/models/Qwen-32B":指定模型文件的路径为容器内的/data/models/Qwen-32B

  • --tensor-parallel-size 4:设置张量并行的规模为4,对应使用4块GPU进行模型并行计算。

  • --gpu-memory-utilization 0.85:设置GPU内存使用率为85%,预留15%的内存空间,防止因内存溢出导致的程序崩溃。

  • --max-model-len 81920:指定模型的最大上下文长度为81920 Token。模型在单次推理中可以处理的输入和输出的总Token数不超过81920个。

  • --api-key token-abc123:设置API访问密钥为“token-abc123”,调用API时需要在请求头中提供此密钥。

  • --enforce-eager:启用Eager执行模式,确保模型推理时逐层计算,避免由于延迟执行可能引发的内存问题。

5. Open Web UI部署

拉取open-webui镜像

docker pull ghcr.nju.edu.cn/open-webui/open-webui:main

启动Open Web UI​​​​​​​

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway \  -v /data/open-webui:/app/backend/data \  --name open-webui --restart always ghcr.nju.edu.cn/open-webui/open-webui:main

访问Web界面

浏览器访问:http://localhost:3000

图片

管理员面板--外部链接--新建模型连接

图片

模型ID留空即可自动从/v1/models接口中获取,开启新对面默认选择DeepSeek-R1-Distill-Llama-70B模型

开启新对话

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值