夏普比率计算实验

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/tumin999/article/details/78357132
# 夏普比率研究 
# 样本平均收益率 / 样本收益率标准差
import pandas as pd
import numpy as np



# 构建两个收盘价序列,都是从10涨到10.5, 但数据2显然质量更高

s1_c = pd.Series([10, 	9.7, 	10, 	10.3, 	10, 	9.7, 	10, 	10.3, 10.5])
s2_c = pd.Series([10, 	10.05, 	10.1, 	10.15, 	10.2, 	10.25, 	10.3, 	10.4, 10.5])

# 计算对数收益率序列
s1_rets= np.log(s1_c/ s1_c.shift(1))
s2_rets= np.log(s2_c/ s2_c.shift(1))

# 计算平均收益率
s1_rets_mean = s1_rets.mean()
s2_rets_mean = s2_rets.mean()

print('平均收益率:', s1_rets_mean, s2_rets_mean)
print('收益率标准差:', s1_rets.std(), s2_rets.std())

# 计算夏普比率
s1_sharp_ratio = s1_rets_mean / s1_rets.std()
s2_sharp_ratio = s2_rets_mean / s2_rets.std()

print('夏普比率:', s1_sharp_ratio, s2_sharp_ratio)


上述实验代码的输出为:

平均收益率: 0.006098770521179013 0.0060987705211789775
收益率标准差: 0.03024780256219734 0.0021711640582323813
夏普比率: 0.20162689533027586 2.8089864964622686

可以看出样本2数据的夏普比率要高的多。
展开阅读全文
博主设置当前文章不允许评论。

没有更多推荐了,返回首页