滴滴出行2017秋招算法笔试题(作弊概率)

本文分享了滴滴出行2017秋招算法笔试中的一道作弊检测题目,涉及贝叶斯定理的应用。题目介绍了系统检测作弊的误差率,并要求计算在被检测出作弊的情况下,真实作弊的概率。通过解析和公式推导,得出答案接近10%。
摘要由CSDN通过智能技术生成

bg.jpg

一、前言

最近博客的更新频率也挺快的,希望自己能坚持下去。每周一篇面试题,这周的面试题是算法笔试题,面试题不知不觉也写了几个月了,不难发现,那些大企业都喜欢考算法题。

二、题目

一位滴滴实习生开发出了一套简易作弊检测系统,此系统存在一定误差。如果一个用户确实存在作弊行为,但是此系统没有检测出的概率为 5 %,但是误检为作弊的概率为 1 %;我们已经知道,一个用户作弊的概率为 0.1 % 。目前一个人被此方法检测出有作弊,那此人确实有作弊的概率接近多少?

A. 90%

B. 70%

C. 30%

D. 10%

三、解题

这道题单凭想,还是挺容易选错的。而且还需知道贝叶斯定理。

贝叶斯定理是关于随机事件 A 和 B 的条件概率的一则定理

贝叶斯定理.png

其中 P(A|B) 是在 B 发生的情况下 A 发生的可能性

在贝叶斯定理中,每个名词都有约定俗成的名称:

  • P(A|B) 是已知 B 发生后 A 的条件概率,也由于得自 B 的取值而被称作 A 的后验

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值