读研,选择高校 or 研究所?

T学长目前已经差不多算是上岸了,在选择去哪个地方读研的时候纠结了很久,选择主要以高校和研究所为区分,对自己探索的结果进行总结。 

首先声明我的观点:本科就在985或者保研的同学,想读个硕士去找工作的话尽量去高校吧,如果是实力强劲的研究所,或者对研究所一些老师知根知底愿意跟着的那另说。如果想读博未来也想留在研究所里工作的,直接研究生时期就在研究所也不错。

每年读研大部队还是奔着“985/211”等名校去,不论是考研还是保研,科研院校确实不在大部分学生的规划里,甚至很多人都没听说过那些院所。

科研院所招收研究生,平时大家听得比较多的,是中科院和社科院。除此之外,其实还有很多科研院所也招研究生,比如中国工程物理研究院,航天科技集团等单位。详情可以在研招网查看。

那么,如何根据自己的现实情况去选择研究所或是高校?

一、 科研条件

研究所的普遍状况是,老师多学生少,硬件条件通常不比985大学差。如果是要想要做科研,有进一步攻读博士学位的打算,去研究所读研究生还是挺不错的选择。

985高校不论是考研还是保研,名额都少得很,尤其一些热度较高的,例如南京大学、北航、北理,浙大,首先人家肯定是先照顾自己的本校学生,还有一堆外校保研进来的,剩下的才是给外校考研的,基本被挑的没剩点啥了。研究院所基本没有自己的本科生源。

当然,研究所与研究所之间的实力,还是有区别的。像北京的一些研究所,物理所,化学所,计算机所,其实力可以和清华北大媲美,自然难度也非常大。但像一些地区的研究所,常常会因完成不成招生计划,不得不接收调剂生。

虽然现在那些研究所都挂名在“中国科学院大学”旗下,但是知名度和社会认可度都不算很高,实力更是参差不齐,不是很被待见。

二、生活补助

这倒是区分研究所和高校的一个显著区别,就以沈自所为例,我是参加推免夏令营的,文件里是这样写的:

在高校里面,一般也就是个6000元/年的国家助学金,学校、学院、导师发的补贴那就不好说了,各个学校都不太一样,甚至有的学校研究生只有国家助学金,生活很难大大方方。

三、各自的特点

研究所:

  • 每月有工资,相当于已经工作,而且大部分研究院是免学费的,每月也有远超于高校的工资
  • 毕业后进入工作快,而且在学习期间已经和要工作的单位有联系,日后从人际关系,还是研究工作都是很好的铺垫
  • 先期的学习是进入名校学习,后期的科研是真实的科研,从增加工程实力水平来说更强
  • 可能以后更多的还是在研究所圈子里混,路子就窄了;本来就想在这个圈子干倒无所谓
  • 进去未必能学到实在的技术,据说现在研究所里的人都是自己申请项目,然后外包给别人去做,有点像包工头的意思,这点也是劝退我的重要原因

高校:

  • 毕业证和学位证书所显示的名气,去企业打工这个很重要,高校比大部分科研院所有名,虽然科研院所在名校学习,但是毕业证和学位证是科研院所的
  • 高校毕竟是学校,以教书育人为根本,一般学习氛围更好,接触的人也广,还有本科的学弟学妹;研究所是没有校园那种氛围的,更多的像是去上班;
  • 如果去的学校还算可以的话,只想毕业,还是好混点的,依靠学校名气也不难找个工作;在研究所混的话,毕业后就业的优势基本没了
  • 整体来说,高校发的补助不算多,往往不够花,还得家里补贴不少
  • 内卷严重,评奖评优,课题组大比拼,发论文,压力还是有的
### PartA2 代码分析 #### 1. 总体架构概述 PartA2 是一种用于三维目标检测的深度学习模型,其整体结构分为两个主要阶段:Part-Aware Stage 和 Part-Aggregation Stage。前者负责通过三维稀疏卷积提取点云中的特征,后者则基于这些特征生成最终的目标分类、置信度以及位置预测[^3]。 #### 2. 数据流与前向传播流程 在网络的 `forward` 函数里,处理逻辑被划分为三个核心步骤: - **RPN (Region Proposal Network)**: 调用 `forward_rpn` 方法来生成区域建议; - **RCNN (Region-based Convolutional Neural Networks)**: 使用 `forward_rcnn` 对选定区域进一步精炼; - **损失计算**: 执行 `get_training_loss` 来评估当前批次的表现并指导反向传播调整参数[^2]。 #### 3. 关键组件解析 ##### RPN 阶段 (`forward_rpn`) 此部分实现了初步的对象提议机制,在这里会应用 UNET 结构来进行语义分割,并从中挑选出可能含有物体的兴趣区。具体实现涉及到了一系列操作如锚框生成、回归修正等,旨在为后续更精细的识别提供基础支持。 ```python def forward_rpn(self, input_data): # 假设输入数据已经过预处理准备好了 features = self.backbone(input_data['spatial_features']) # 提取空间特征 rpn_preds_dict = {} # 进行多尺度特征融合和其他必要的变换... return rpn_preds_dict ``` ##### RCNN 阶段 (`forward_rcnn`) 一旦获得了高质量的候选框之后,则进入该环节做最后的确诊工作——即确认每个候选框内确实存在何种类型的实体对象及其确切的空间坐标范围。这部分同样依赖于精心设计好的神经网络层完成复杂的模式匹配任务。 ```python def forward_rcnn(self, rois, roi_scores, rcnn_cls, rcnn_reg): batch_size = rois.shape[0] selected_rois = [] for index in range(batch_size): cur_roi = rois[index][roi_scores[index] > score_thresh] if len(cur_roi) == 0: continue refined_box = refine_boxes(cur_roi, rcnn_reg[index]) final_predictions.append({ 'boxes': refined_box, 'scores': F.softmax(rcnn_cls[index], dim=-1), }) return final_predictions ``` #### 4. 损失函数定义 为了确保训练过程中能够有效地优化上述提到的功能模块,整个框架采用了两种不同形式的监督信号共同作用下的联合损失函数(part-aware loss + part-aggregation loss),从而使得模型可以同时兼顾局部细节描述能力和全局场景理解能力[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是刃小木啦~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值