运动目标检测跟踪各过程算法综述

本文概述了运动目标检测跟踪的过程,包括图像预处理、运动目标检测方法(背景差分法、光流法、帧差法)、图像标识、图像分割技术(直方图阈值分割、区域生长等)以及运动轨迹预测和目标跟踪策略。此外,还讨论了运动目标检测面临的挑战,如光线变化、遮挡问题、阴影问题等。
摘要由CSDN通过智能技术生成
图像预处理
数字图像中的几种典型噪声有:高斯噪声来源于电子电路噪声和低照明度或高温带来的传感器噪声;椒盐噪声类似于随机分布在图像上的胡椒和盐粉微粒,主要由图像切割引起或变换域引起的误差;加性噪声是图像在传输中引进的信道噪声。
一般来说,引入的都是加性随机噪声,可以采用均值滤波、中值滤波、高斯滤波等方法去除噪声,提高信噪比。均值滤波在噪声分布较平均,且峰值不是很高的情况下能够得到较好的应用;中值滤波对尖脉冲噪声的滤除有较好的效果,并且能突出图像的边缘和细节;高斯滤波对滤除高斯白噪声有较好的效果。

运动目标检测

背景差分法:能完整、快速地分割出运动对象。不足之处易受光线变化的影响,背景的更新是关键。不适用摄像头运动的情况。
光流法:能检测独立运动的对象,可用于摄像头运动的情况,但计算复杂耗时,很难实时检测。
帧差法:受光线变化影响较小,简单快速,但不能分割出完整的运动对象,需进一步运用目标分割算法。还有一些改进的算法,主要致力于减少光照影响和检测慢速物体变化。

图像标识
图像标识的作用是确定物体是否独立,图像中有几个运动目标。
1)领域:常取周围的4或8个像素作为领域。
2)连通域:二值图像中互相连通的0像素集或1像素集称之为连通域。被1像素包围的0像素叫做孔。1像素连通域不含孔时,叫做单连通成分,含有一个或多个孔的连通成为叫做多重连通成分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值