[2014Contest_2I]The Worst Schedule

解题思路:

涨姿势,什么叫闭合图: http://www.cnblogs.com/wuyiqi/archive/2012/03/12/2391960.html


第一种解法:

第一问:s和i点连一个权为ai的边,y和i点连一个权为bi的边,若j依赖i,则i向j连一条权为inf的边。对图求最小割。

图可以这样建的原因是:假设j依赖i,若i到y的边断了,即i为延迟完成。这时候从s到i的的残留会转移到i->j->y,这时候也只能把j到y的边断了。

第二问:s集合是延迟集合,t是提前集合。把s的点都跑一遍标记一下,剩余的都可以分给t集。


第二种解法:

第一问:我也不知道他们是怎么想到的,先对所有点取sum(min(del[i], adv[i]))并把它当作答案。如果没有依赖的话,显然这个就是答案。

对于所有点,如果adv[i] - del[i] > 0(表示提前完成比延迟完成多的代价),则s到i连一条adv[i] - del[i]边(表示延迟完成比提前完成多的代价),否则i到t连一条边del[i] - adv[i],若j依赖i,则i向j连一条INF的边。对上图求最小割。

假设存在j依赖i,并且del[i] - adv[i] < 0,之前我们默认i是延迟的,若把s->i断掉,则i变成是提前的;若不把s->i断掉,则残留压向i->j,若存在j->t的边,则j->t也要断掉。符合题目要求。

太机智了。

第二问:同上。


第一种:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <utility>
#include <queue>
#include <stack>
#include <cstdlib>
#include <ctime>
using namespace std;

#pragma comment(linker,"/STACK:102400000,102400000")

#define LL long long
#define ULL unsigned long long
#define Hei cout << "Czy!!!" << endl;
#define lson rt << 1, l, mid
#define rson  rt << 1 | 1, mid + 1, r
#define MOD 1000000007

/*
clock_t t1, t2;
t1 = clock();
t2 = clock();
cout << (double)(t2 - t1) / CLOCKS_PER_SEC << endl;
*/

#define maxn 210
#define INF 100000000

struct Edge
{
    int from, to, cap, flow;
    Edge(int from = 0, int to = 0, int cap = 0, int flow = 0): from(from), to(to), cap(cap), flow(flow) {}
};

vector<int> G[maxn];
vector<Edge> edges;

 bool vis[210];

int tot;

void AddEdge(int from, int to, int cap)
{
    edges.push_back(Edge(from, to, cap, 0));
    edges.push_back(Edge(to, from, 0, 0));
    int m = edges.size();
    G[from].push_back(m - 2);
    G[to].push_back(m - 1);
}

struct Dinic
{
    int s, t;
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];
    bool BFS()
    {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        while (!Q.empty()) Q.pop();
        Q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while (!Q.empty())
        {
            int x = Q.front();
            Q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge &e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)
    {
        if (x == t || a == 0) return a;
        int flow = 0, f ;
        for (int& i = cur[x]; i < G[x].size(); i++)
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] &&  (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)
            {
                e.flow += f;
                edges[G[x][i] ^ 1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int MaxFlow(int s, int t)
    {
        this->s = s;
        this->t = t;
        int flow = 0;
        while (BFS())
        {
            //Hei;
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
}solver;

void dfs(int u)
{
    vis[u] = true;
    for (int i = 0; i < G[u].size(); i++)
    {
        Edge e = edges[G[u][i]];
        if (e.flow != e.cap && !vis[e.to]) dfs(e.to);
    }
}

int main()
{
    freopen("gen.in", "r", stdin);
    freopen("my.out", "w", stdout);
    int n;
    while (cin >> n)
    {
        edges.clear();
        for (int i = 0; i <= n + 1; i++) G[i].clear();
        for (int i = 1; i <= n; i++)
        {
            int x;
            scanf("%d", &x);
            AddEdge(0, i, x);
        }
        for (int i = 1; i <= n; i++)
        {
            int x;
            scanf("%d", &x);
            AddEdge(i, n + 1, x);
        }
        int m;
        cin >> m;
        while (m--)
        {
            int x, y;
            scanf("%d%d", &x, &y);
            AddEdge(x, y, INF);
        }
        cout << solver.MaxFlow(0, n + 1) << " ";
        memset(vis, false, sizeof(vis));
        dfs(0);
        int tot = 0;
        for (int i = 1; i <= n; i++) if (!vis[i]) tot++;
        cout << tot << endl;
    }
    fclose(stdin);
    fclose(stdout);
}


第二种:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <utility>
#include <queue>
#include <stack>
#include <cstdlib>
#include <ctime>
using namespace std;

#pragma comment(linker,"/STACK:102400000,102400000")

#define LL long long
#define ULL unsigned long long
#define Hei cout << "Czy!!!" << endl;
#define lson rt << 1, l, mid
#define rson  rt << 1 | 1, mid + 1, r
#define MOD 1000000007

/*
clock_t t1, t2;
t1 = clock();
t2 = clock();
cout << (double)(t2 - t1) / CLOCKS_PER_SEC << endl;
*/

#define maxn 210
#define INF 100000000

struct Edge
{
    int from, to, cap, flow;
    Edge(int from = 0, int to = 0, int cap = 0, int flow = 0): from(from), to(to), cap(cap), flow(flow) {}
};

vector<int> G[maxn];
vector<Edge> edges;

bool vis[210];
int adv[210], del[210];

void AddEdge(int from, int to, int cap)
{
    edges.push_back(Edge(from, to, cap, 0));
    edges.push_back(Edge(to, from, 0, 0));
    int m = edges.size();
    G[from].push_back(m - 2);
    G[to].push_back(m - 1);
}

struct Dinic
{
    int s, t;
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];
    bool BFS()
    {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        while (!Q.empty()) Q.pop();
        Q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while (!Q.empty())
        {
            int x = Q.front();
            Q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge &e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)
    {
        if (x == t || a == 0) return a;
        int flow = 0, f ;
        for (int& i = cur[x]; i < G[x].size(); i++)
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] &&  (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)
            {
                e.flow += f;
                edges[G[x][i] ^ 1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int MaxFlow(int s, int t)
    {
        this->s = s;
        this->t = t;
        int flow = 0;
        while (BFS())
        {
            //Hei;
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
}solver;

void dfs(int u)
{
    vis[u] = true;
    for (int i = 0; i < G[u].size(); i++)
    {
        Edge e = edges[G[u][i]];
        if (e.flow != e.cap && !vis[e.to]) dfs(e.to);
    }
}

int main()
{
    freopen("gen.in", "r", stdin);
    freopen("my.out", "w", stdout);
    int n;
    while (cin >> n)
    {
        edges.clear();
        for (int i = 0; i <= n + 1; i++) G[i].clear();
        for (int i = 1; i <= n; i++) scanf("%d", &adv[i]);
        int ans = 0;
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &del[i]);
            if (adv[i] - del[i] > 0) AddEdge(0, i, adv[i] - del[i]);
            else AddEdge(i, n + 1, del[i] - adv[i]);
            ans += min(adv[i], del[i]);
        }
        int m;
        cin >> m;
        while (m--)
        {
            int x, y;
            scanf("%d%d", &x, &y);
            AddEdge(x, y, INF);
        }
        cout << solver.MaxFlow(0, n + 1) + ans << " ";
        memset(vis, false, sizeof(vis));
        dfs(0);
        int tot = 0;
        for (int i = 1; i <= n; i++) if (!vis[i]) tot++;
        cout << tot << endl;
    }
    fclose(stdin);
    fclose(stdout);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值