写在前面
原论文标题:Layered Affine Formation Control of Networked Uncertain Systems: A Fully Distributed Approach Over Directed Graphs
本文为近期阅读的论文(Dong 2020)1的笔记。该论文研究欧拉-拉格朗日系统(以下称EL系统)有向图拓扑下的分布式仿射编队控制。论文重点集中于两处:其一,有向图下的仿射可操控条件;其二,leader和follower分层控制律。
预备基础
这里默认读者都看过Lin 20162和Zhao 20183,这两篇论文是以下内容的基础,证明不再给出,请自行参阅原论文。由于不同论文所用标志符号不同,本文所用标志符号统一与前文(仿射队形控制原理与stress matrix的构建)一致。
分层拉普拉斯矩阵
定义1:nominal formation ( G , r ) (\mathcal G,r) (G,r)称为仿射可操控(affine maneuverable),当且仅当对任意 q = [ q l T , q f T ] T ∈ A ( r ) ∈ R N d q=[q_l^T,q_f^T]^T\in\mathcal A(r)\in\mathbb R^{Nd} q=[qlT,qfT]T∈A(r)∈RNd, q f q_f qf可以被 q l q_l ql唯一表示,即
q f = − ( ( L f 1 s ) − 1 L f 2 s ⊗ I d ) q l 。 q_f=-((L_{f1}^s)^{-1}L_{f2}^s\otimes I_d)q_l。 qf=−((Lf1s)−1Lf2s⊗Id)ql。
注意:这里的“仿射可操控”其实就是Zhao 2018的“仿射可定位”,整合了Zhao的一部分相关结论。
上面定义中用到的拉普拉斯矩阵在论文中也有重新定义,为分层拉普拉斯矩阵(Layered Laplacian matrix),即
L
†
=
[
0
0
N
l
T
0
N
f
T
L
l
2
L
l
1
0
N
l
×
N
f
0
N
f
L
f
2
s
L
f
1
s
]
,
L^\dagger=\begin{bmatrix}0&0_{N_l}^T&0_{N_f}^T\\ L_{l2}&L_{l1}&0_{N_l\times N_f}\\ 0_{N_f}&L_{f2}^s&L_{f1}^s\end{bmatrix},
L†=⎣⎡0Ll20Nf0NlTLl1Lf2s0NfT0Nl×NfLf1s⎦⎤,
其中
L
l
1
∈
R
N
l
×
N
l
L_{l1}\in\mathbb R^{N_l\times N_l}
Ll1∈RNl×Nl表示leader之间的拓扑,
L
l
2
∈
R
N
l
×
1
L_{l2}\in\mathbb R^{N_l\times 1}
Ll2∈RNl×1,表示leader与虚拟agent的拓扑,
L
f
1
s
∈
R
N
f
×
N
f
L_{f1}^s\in\mathbb R^{N_f\times N_f}
Lf1s∈RNf×Nf表示follower之间的拓扑,
L
f
2
s
∈
R
N
f
×
N
l
L_{f2}^s\in\mathbb R^{N_f\times N_l}
Lf2s∈RNf×Nl表示leader和follower之间的拓扑。
综上所述,分层拉普拉斯矩阵表示分层的拓扑结构,第一层是普通拉普拉斯矩阵
L
=
[
0
0
N
l
L
l
2
L
l
1
]
∈
R
(
N
l
+
1
)
×
(
N
l
+
1
)
,
L=\begin{bmatrix}0&0_{N_l}\\ L_{l2}&L_{l1}\end{bmatrix}\in\mathbb R^{(N_l+1)\times (N_l+1)},
L=[0Ll20NlLl1]∈R(Nl+1)×(Nl+1),
第二层是带符号拉普拉斯矩阵
L
s
=
[
0
N
l
×
N
l
0
N
l
×
N
f
L
f
2
s
L
f
1
s
]
∈
R
(
N
l
+
N
f
)
×
(
N
l
+
N
f
)
。
L^s=\begin{bmatrix}0^{N_l\times N_l}&0^{N_l\times N_f}\\ L_{f2}^s &L_{f1}^s\end{bmatrix}\in\mathbb R^{(N_l+N_f)\times(N_l+N_f)}。
Ls=[0Nl×NlLf2s0Nl×NfLf1s]∈R(Nl+Nf)×(Nl+Nf)。
整个控制过程的逻辑结构是,一个虚拟agent 0(如:人的输入)控制多个leader,再由leader控制follower。为了完成这个控制过程,需要以下假设和引理。
令所有agent的label为 0 , 1 , ⋯ , N l , ⋯ , N l + N f 0,1,\cdots,N_l,\cdots,N_l+N_f 0,1,⋯,Nl,⋯,Nl+Nf。前 N l + 1 N_l+1 Nl+1个组成图 G l \mathcal G_l Gl。
假设4:对于第一层的 N l ( N l ≥ d + 1 ) N_l(N_l\geq d+1) Nl(Nl≥d+1)个leader,图 G l \mathcal G_l Gl中存在一个有向生成树,其中root为agent 0。
引理1:对于第一层,如果图 G l \mathcal G_l Gl中存在一个有向生成树,那么下列声明成立:
- L l 1 L_{l1} Ll1非奇异;
- 所有 L l 1 L_{l1} Ll1的特征根有正实部;
- − L l 1 − 1 L l 2 -L_{l1}^{-1}L_{l2} −Ll1−1Ll2的每一个元素非负,每一行和为1。
证明:前两条证明见Meng 20134的Lemma 2.1,第三条证明见Meng 20105的Lemma 4。 L l 1 L_{l1} Ll1是一个non-singular M-matrix,满足inverse-positive,即 L l 1 − 1 L_{l1}^{-1} Ll1−1 exists and L l 1 − 1 ≥ 0 L_{l1}^{-1}\geq 0 Ll1−1≥0 element-wisely6。而 L l 2 L_{l2} Ll2的每一个元素非正,因为agent 0只可能是leader的in-neighbor。因此 − L l 1 − 1 L l 2 -L_{l1}^{-1}L_{l2} −Ll1−1Ll2的每一个元素非负。注意到 [ L l 2 L l 1 ] [ 1 1 N l ] = 0 \begin{bmatrix}L_{l2} &L_{l1}\end{bmatrix}\begin{bmatrix}1\\ 1_{N_l}\end{bmatrix}=0 [Ll2Ll1][11Nl]=0。因此, L l 2 = − L l 1 1 N l L_{l2}=-L_{l1}1_{N_l} Ll2=−Ll11Nl,即 − L l 1 − 1 L l 2 = 1 N l -L_{l1}^{-1}L_{l2}=1_{N_l} −Ll1−1Ll2=1Nl行和为1(全1列向量)。
有向图下的仿射队形
以下定义和假设出自Zhao 2018,详见前文(仿射队形控制原理与stress matrix的构建)。
定义configuration matrix P ( q ) P(q) P(q)和augmented matrix P ˉ ( q ) \bar P(q) Pˉ(q)。
假设5:nominal configuration r r r is generic.
以下定义和引理出自Lin 2016:
若有向图 G = ( V , E ) \mathcal G=(\mathcal V,\mathcal E) G=(V,E)中存在边 ( j , i ) ∈ E (j,i)\in\mathcal E (j,i)∈E,方向为 j → i j \to i j→i,那么 j j j是 i i i的in-neighbor, i i i是 j j j的out-neighbor。
定义2.1:对于有向图 G \mathcal G G,如果去掉除节点 v ∈ V v\in\mathcal V v∈V外的任意 k − 1 k-1 k−1个节点,仍然存在一条路径(path)从某一节点 u ∈ U u\in\mathcal U u∈U到节点 v v v,那么节点 v v v被称为 k k k-reachable from 非单元素(non-singleton)集合 U \mathcal U U。
从上面的定义中,我们可以得知:
- U \mathcal U U的元素必定大于等于 k k k个,才能保证去掉 k − 1 k-1 k−1个节点后 U ≠ ∅ \mathcal U\neq \empty U=∅;
- 从集合 U \mathcal U U到节点 v v v至少有 k k k条互不相交(disjoint)的路径。
定义2.2:有向图 G \mathcal G G是 k k k-rooted,如果存在包含 k k k个节点的子集,称为根(root)集,从根集出发所有其他节点都 k k k-reachable。
定义2.3:对于有向图 G = ( V , E ) \mathcal G=(\mathcal V,\mathcal E) G=(V,E),一个根集为 R = { r 1 , ⋯ , r k } ⊂ V \mathcal R=\{r_1,\cdots,r_k\}\subset \mathcal V R={r1,⋯,rk}⊂V的 k k k-生成树(spanning k k k-tree)是一个生成子图(spanning subgraph) T = ( V , E ˉ ) \mathcal T=(\mathcal V,\bar {\mathcal E}) T=(V,Eˉ),其满足:
- 每一个节点 r ∈ R r\in\mathcal R r∈R都没有in-neighbor;
- 每一个节点 v ∉ R v\notin\mathcal R v∈/R都有 k k k个in-neighbor;
- 每一个节点 v ∉ R v\notin\mathcal R v∈/R都 k k k-reachable from R \mathcal R R。
从上面的定义中,我们可以得知:
- 有向图 G \mathcal G G如果有 k k k-生成树,那么一定 k k k-rooted;
- 如果节点 k k k-reachable,那么必然有 k k k个in-neighbor。
引理2 (Lemma 2.1, Lin 2016):图 G \mathcal G G有一个 k k k-生成树,当且仅当图 G \mathcal G G是 k k k-rooted。
只需证明必要性。令根集为 R \mathcal R R,并移除所有incoming edge,其他节点仍然 k k k-reachable。再移除其他节点的多余incoming edge,只留下 k k k个保证 k k k-reachable。通过上述两步得到 k k k-生成树,利用了 k k k-路径的互不相交性。
引理3 (Lemma 4.1, Lin 2016):对于有向图 G \mathcal G G,如果它是 k k k-rooted,那么相关的 L s L^s Ls满足:
- 去掉与根节点相关的 k k k行和 k k k列所得子矩阵的主子式(principal minor)不为0;
- 去掉与根节点相关的 k k k行和任意的 k k k列所得子矩阵是非奇异的。
回顾一下,余子式(minor) [ A ] i , j [A]_{i,j} [A]i,j是原矩阵 A A A去掉第 i i i行和第 j j j列后的子矩阵的行列式,如果 i = j i=j i=j,则为主子式7。
参考Lin 2016,定义仿射队形可实现(realizable)为: ( L s ⊗ I d ) q = 0 (L^s\otimes I_d)q=0 (Ls⊗Id)q=0当且仅当 q ∈ A ( r ) q\in\mathcal A(r) q∈A(r)。
引理4 (Theorem 4.1, Lin 2016):假如有向图 G \mathcal G G有 N ≥ d + 2 N\geq d+2 N≥d+2个节点,且 r r r是generic。那么仿射队形可实现当且仅当 G \mathcal G G是 ( d + 1 ) (d+1) (d+1)-rooted。
有向图下的仿射可操控条件
定理1:在假设5条件下,nominal formation ( G , r ) (\mathcal G,r) (G,r)仿射可操控,当且仅当leader集合 V l \mathcal V_l Vl有至少 d + 1 d+1 d+1个节点,同时集合 V f V_f Vf中的每一个follower都 ( d + 1 ) (d+1) (d+1)-reachable from集合 V l V_l Vl。
证明:(充分性) 满足条件的 G \mathcal G G是 ( d + 1 ) (d+1) (d+1)-rooted,所以有 k k k-生成树,仿射队形可实现。再加上 L f 1 s L_{f1}^s Lf1s的非奇异性,队形可被唯一确定,即仿射可操控。(必要性) 如果仿射可操控,必然存在 L s L^s Ls使得仿射队形可实现,故 G \mathcal G G是 ( d + 1 ) (d+1) (d+1)-rooted满足条件。
假设6:集合 V f V_f Vf中的每一个follower都 ( d + 1 ) (d+1) (d+1)-reachable from集合 V l V_l Vl。
leader和follower分层控制律
问题1:给定初始队形 G ( q ( 0 ) ) \mathcal G(q(0)) G(q(0))和nominal configuration matrix P ( r ) P(r) P(r),为每一个agent设计基于邻居相对位置和速度的控制律 τ i ( t ) \tau_i(t) τi(t),使得 q l → − ( L l 1 − 1 L l 2 ⊗ I d ) q 0 + p q_l\to -(L_{l1}^{-1}L_{l2}\otimes I_d)q_0+p ql→−(Ll1−1Ll2⊗Id)q0+p,且 q f → − ( ( L f 1 s ) − 1 L f 2 s ⊗ I d ) q l q_f\to-((L_{f1}^s)^{-1}L_{f2}^s\otimes I_d)q_l qf→−((Lf1s)−1Lf2s⊗Id)ql误差有界,其中 p = [ p 1 T , ⋯ , p N l T ] T p=[p_1^T,\cdots,p_{N_l}^T]^T p=[p1T,⋯,pNlT]T, p i p_i pi为相对于nominal formation的位移。
可以看出, − ( L l 1 − 1 L l 2 ⊗ I d ) q 0 -(L_{l1}^{-1}L_{l2}\otimes I_d)q_0 −(Ll1−1Ll2⊗Id)q0实现consensus,即所有leader收敛于 q 0 q_0 q0,再加上 p p p即为相对 q 0 q_0 q0的位移。
论文对两层都用了自适应NN控制律(adaptive NN-based control law),误差有限时间收敛到原点的一个邻域,即practical finite-time stability8。
注意:这里的practical是针对EL系统的模型不确定性来说的,如果模型完全确定,那么是可以有限时间收敛到原点的。
至于自适应NN控制律如何设计,我在这里挖个坑,之后的文章里结合Wang 20099讲。
Li, D., Ma, G., Xu, Y., He, W., & Ge, S. S. (2020). Layered Affine Formation Control of Networked Uncertain Systems: A Fully Distributed Approach Over Directed Graphs. IEEE Transactions on Cybernetics, 1–12. https://doi.org/10.1109/tcyb.2020.2965657 ↩︎
Lin, Z., Wang, L., Chen, Z., Fu, M., & Han, Z. (2016). Necessary and sufficient graphical conditions for affine formation control. IEEE Transactions on Automatic Control, 61(10), 2877–2891. https://doi.org/10.1109/TAC.2015.2504265 ↩︎
Zhao, S. (2018). Affine Formation Maneuver Control of Multiagent Systems. IEEE Transactions on Automatic Control, 63(12), 4140–4155. https://doi.org/10.1109/TAC.2018.2798805 ↩︎
Meng, Z., Lin, Z., & Ren, W. (2013). Robust cooperative tracking for multiple non-identical second-order nonlinear systems. In Automatica (Vol. 49, pp. 2363–2372). Elsevier Ltd. https://doi.org/10.1016/j.automatica.2013.04.040 ↩︎
Meng, Z., Ren, W., & You, Z. (2010). Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 46(12), 2092–2099. https://doi.org/10.1016/j.automatica.2010.09.005 ↩︎
Wikipedia contributors. (2020, August 29). M-matrix. In Wikipedia, The Free Encyclopedia. Retrieved 08:23, October 8, 2020, from https://en.wikipedia.org/w/index.php?title=M-matrix&oldid=975609653 ↩︎
Wikipedia contributors. (2020, May 20). Minor (linear algebra). In Wikipedia, The Free Encyclopedia. Retrieved 02:22, October 8, 2020, from https://en.wikipedia.org/w/index.php?title=Minor_(linear_algebra)&oldid=957799839 ↩︎
Zhu, Z., Xia, Y., & Fu, M. (2011). Attitude stabilization of rigid spacecraft with finite-time convergence. International Journal of Robust and Nonlinear Control, 21(6), 686–702. https://doi.org/10.1002/rnc.1624 ↩︎
Wang, L., Chai, T., & Zhai, L. (2009). Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Transactions on Industrial Electronics, 56(9), 3296–3304. https://doi.org/10.1109/TIE.2008.2011350 ↩︎