torch.optim.Adam算法里面参数的含义

[docs]class Adam(Optimizer):
    r"""Implements Adam algorithm.

    It has been proposed in `Adam: A Method for Stochastic Optimization`_.
    The implementation of the L2 penalty follows changes proposed in
    `Decoupled Weight Decay Regularization`_.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        amsgrad (boolean, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ
    """

lr 是Adam算法里面的\alpha,代表学习率

betas ,一个元组(tuple)是Adam算法里面的\beta _1\beta _2,代表历史积累动量在新求的的动量里面的权重比

eps,是Adam算法里面的\epsilon,避免分母为零用的,不会影响结果的小tip

weight_decay,就是第12行里面的\lambda,就是weight参数的衰减因子,因为\lambda\eta都大于0,每次update weight参数,

都会对参数的值增加起到抑制的作用。

那么为什么要抑制weight参数不要变得过大呢?

从模型的复杂度上解释:更小的权值w,从某种意义上说,表示网络的复杂度更低,对数据的拟合更好(这个法则也叫做奥卡姆剃刀)

其实控制weight参数在一个值范围内,也在一定程度上减小了function set的选择范围,不会让我们选择一个过于偏冷复杂的function如下图,

训练时我们选择简单的黑线就挺好,不必找到最合适但很复杂的绿线。

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子燕若水

吹个大气球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值