pytorch 笔记:torch.optim.Adam

  •  torch.optim.Adam 是一个实现 Adam 优化算法的类。
  • Adam 是一个常用的梯度下降优化方法,特别适合处理大规模数据集和参数的深度学习模型
torch.optim.Adam(
    params, 
    lr=0.001, 
    betas=(0.9, 0.999), 
    eps=1e-08, 
    weight_decay=0, 
    amsgrad=False, 
    *, 
    foreach=None, 
    maximize=False, 
    capturable=False, 
    differentiable=False, 
    fused=None)
params 待优化参数的可迭代对象,或定义参数组的字典
lr 学习率,默认为 1e-3
betas 用于计算梯度及其平方的移动平均的系数,默认为 (0.9, 0.999)
eps 为了提高数值稳定性而添加到分母的项,默认为 1e-8
weight_decay 权重衰减(L2惩罚),默认为 0
amsgrad 是否使用 AMSGrad 变种,该变种来源于论文 "On the Convergence of Adam and Beyond",默认为 False
fore
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值