目录
第二章 向量
2.1什么是向量,为什么引入向量
a.什么是向量,为什么引入向量?
一组数的基本表示方法--向量(Vector)
向量是线性代数研究的基本元素
一个数:666 一组数:(6,66,666)
b.一组数有什么用?
基本的出发点:表示方向
c.起始点不重要?
从(-1,-1)到(3,2)和从(0,0)到(4,3)是一样的,但坐标系不一样。
为了研究方便,我们定义向量都从原点起始,但是,顺序是重要的!
(4,3)和(3,4)截然不同
如果只是表示方向,最多三个维度就够了
更加抽象的:n维向量
(120,3,2,2,666)此时,向量就是一组数,这组数的含义由使用者来决定的。
两个视角看似不同,但可以互相转换
一个方向,就是一个点,
空间中的一个点,可以看做从原点指向这个点的一个方向
在学习初始,使用方向的视角,更直观,更形象
更关键的是:这两个视角,都不是简单的“一组数”
一个是一个有向线段
一个是空间中的点
2.2向量的更多术语和表示方法
更严格的一些定义
和向量相对应,一个数字,称为标量
代数,用符号代表数。和标量相区别,向量的符号画箭头:
个别情况下,尤其是几何学中,我们会考虑向量的起始点
行向量和列向量 (3,4)
在现阶段,没有区别
通常教材,论文,提到向量,都指列向量
由于横板印刷原因,使用符号:
2.3向量的基本运算
向量加法
先向x移动5个单位,再向y移动2个单位
接着向x移动2个单位,再向y移动5个单位
向量乘法
2.4向量运算的基本性质
证明举例:
2.5零向量