第二章 向量

目录

第二章 向量

2.1什么是向量,为什么引入向量

2.2向量的更多术语和表示方法

2.3向量的基本运算

向量加法

向量乘法

2.4向量运算的基本性质

2.5零向量


第二章 向量

2.1什么是向量,为什么引入向量

a.什么是向量,为什么引入向量?

一组数的基本表示方法--向量(Vector)

向量是线性代数研究的基本元素

一个数:666   一组数:(6,66,666)

b.一组数有什么用?

基本的出发点:表示方向

 

c.起始点不重要?

从(-1,-1)到(3,2)和从(0,0)到(4,3)是一样的,但坐标系不一样。

为了研究方便,我们定义向量都从原点起始,但是,顺序是重要的!

(4,3)和(3,4)截然不同

如果只是表示方向,最多三个维度就够了

更加抽象的:n维向量

(120,3,2,2,666)此时,向量就是一组数,这组数的含义由使用者来决定的。

两个视角看似不同,但可以互相转换

一个方向,就是一个点,

空间中的一个点,可以看做从原点指向这个点的一个方向

在学习初始,使用方向的视角,更直观,更形象

更关键的是:这两个视角,都不是简单的“一组数”

一个是一个有向线段

一个是空间中的点

2.2向量的更多术语和表示方法

更严格的一些定义

和向量相对应,一个数字,称为标量

代数,用符号代表数。和标量相区别,向量的符号画箭头:\vec{v}

个别情况下,尤其是几何学中,我们会考虑向量的起始点

行向量和列向量 (3,4) \binom{3}{4}

在现阶段,没有区别

通常教材,论文,提到向量,都指列向量

由于横板印刷原因,使用符号:

2.3向量的基本运算

向量加法

先向x移动5个单位,再向y移动2个单位

接着向x移动2个单位,再向y移动5个单位

向量乘法

2.4向量运算的基本性质

证明举例:

2.5零向量

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子非愚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值