漫步微积分十二——隐函数、分数指数

目前我们遇到的大部分函数形式都是 y=f(x) y 直接或明确的表示成x的形式。然而,我们常常看到如下形式的定义

F(x,y)=0(1)

不仅仅牵涉到 y x,y他们互相或多或少有点牵连。当给定一个 x 值,等式通常对应一个或多个y值。对这种情况,我们称 y x的隐函数。

例1:(a)考虑一个简单的等式, xy=1 ,它确定了一个 x 的隐函数,我们可以显示的写为

y=1x

(b)等式 x2+y2=25 确定了两个 x 的隐函数,显示的表达为

y=25x2y=25x2.

我们都知道,这两个函数图像分别是半径为5的圆的上下两部
分,如图1。


这里写图片描述
图1

(c)等式 2x22xy=5y2 也确定了两个隐函数。如果看作 y 的二次函数,那么函数解为

y=x+5x2y=x5x2

(d)等式 3+y3=3axy(a>0) 确定了几个隐函数,但是解决它比较麻烦,所以跳过它吧(嘿嘿嘿)。

我们经常会遇到需要计算隐函数的导数 dydx 但开始却没有 y 等式的情况。根据链式法则,等式两边直接对x 求导,无论 y 在哪里出现,都将其看作x的函数。例如, y3 看作 x 函数的立方,它的导数为

ddxy3=3y2dydx

x3y4 看作两个 x 函数相乘,其导数为

ddx(x3y4)=x34y3dydx+y43x2

为了完成整个过程,将 dy/dx 代入即可。这个方法叫做隐函数求导。我们将它应用到例1,展示了它的工作过程。

例2:(a)我们把等式 xy=1 看作两个相等的 x 函数(即:xy和1)。这两个函数的导数是相等的,所以

xdydx+y=0ordydx=yx

根据原等式可以求出 y=1/x ,代入的

dydx=yx=1x1x=1x2

y=1/x 直接求导得

dydx=1x2

(b)对等式 x2+y2=25 进行求导得

2x+2ydydx=0ordydx=xy

无论对那个隐函数,它都给出了正确的结果。图1中点(4,3)位于上半部分, dy/dx 43 ,点(4,-3)位于下半部分, dy/dx 43

(c)对等式 2x22xy=5y2 隐式求导得

4x2xdydx2y=2ydydxordydx=2xyxy.

(d)在例1(d)中, dy/dx 的导数无法直接计算。然而,利用隐函数将会容易许多。对 x3+y3=3axy ,我们有

3x2+3ydydx=3axdydx+3ayordydx=ayx2y2ax

很明显,隐函数求导通常给出 dy/dx 的形式,包含了 x,y 而不是只有 x 。但是,在许多情况下这并非是个缺点。例如,如果我们计算一个等式在点(x0,y0)处切线的斜率,我们需要做的就是将 x0,y0 代入公式 dy/dx 。 例2(b)在点(4,3)和(4,-3)的情况就说明了这一点。

现在我们利用隐函数求导来说明下面的公式对所有分数指数 n=p/q 依然成立

ddxxn=nxn1(2)

为了方便,我们对(2)式引入一个因变量

y=xp/q

两边都去 q 次方的

yq=xp

两边对 x 求导并利用整数的幂规则得

qyq1dydx=pxp1

或者

dydx=pqxp1yq1

yq1=yq/y=xp/xp/q ,所以

dydx=pqxp1yq1=pqxp1xpxp/q=pqxp/q1

得证。

例3:根据上面的结论,我们立马可以得出

ddxx1/2=12x1/2,ddxx2/3=23x5/3,ddxx5/4=54x1/4

第一个经常写成如下形式

ddxx=12x

例4:对于有基底的表达式求导,首先用分数来替换所有基底。

ddxxx21==ddxx(x21)1/2=x(12)(x21)3/2(2x)+(x21)1/2x2(x21)3/2+1(x21)1/2=x2+(x21)(x21)3/2=1(x21)3/2

目前为止提到的所有规则将被用于许多方面。因此,最好能够记住他们,并多加练习达到能立马写出的地步。一位哲学家曾说过:文明进步依赖于不加思索就能够说出的运算数量。

有一点值得说明,在计算导数时,幂规则和除法法则最容易出错。例如,对于幂规则,很容易忘记 du/dx 。而除法法则易错点是分子里减法的顺序。如果忘记的话,我们可以利用乘法法则迅速推导出来:

ddx(uv)==ddx(uv1)=u(1)v2dvdx+v1dudx1vdudxuv2dvdx=vdu/dxudv/dxv2

{\color{red}{注解}} 例1(d)有一段很长的历史,值得进一步评论一下。它的图像叫做笛卡尔叶,如图2。考虑最简单的情况即 a=1 ,那么等式变为

x3+y3=3xy(3)

x 的形式表示y求不出解。因此有许多历史爱好者的故事。


这里写图片描述
图2

1545年,意大利医生家、数学家、占星家吉罗拉莫 卡尔达诺(1501-1576)用基的方法发现了任何三次方程解的公式。这个公式类似于大家熟悉的二次公式但是要复杂得多。如果用卡尔达诺的公式求解方程(3),那么有三个解函数
y1=x32+x64x33+x32x64x33


y2,y3=12y1±123x32+x64x33x32x64x33

隐函数求导的方法明显比这样直接求导好许多。再说,对于下面的等式

x5+5x4y2+3xy3+y5=1

无法用 x 的形式来表示y,但是利用隐函数求导法则可以很容易的得到导数。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值