漫步线性代数九——求Ax=0和Ax=b

前面的文章关注的是方阵的逆矩阵, Ax=b 有一个解的话它就是 x=A1b ,它可以通过消元法得到。一个长方形矩阵带来的新的可能性—— U 可能没有所有的主元,本文我们就将U 化为形式 R —— 消元法能给出的最简矩阵,R立马给出所有解。

对于一个可逆矩阵,零空间只包含 x=0 ,列空间就是整个空间,当零空间不仅仅包含零向量而(或)列空间没有包含所有向量时新的问题出现了:

  1. 零空间里的任意向量 xn 可以加到一个特解 xp 上,所有线性方程解的形式为 x=xp+xn
    Axp=bAxn=0A(xp+xn)=b
  2. 当列空间不包含 Rm 里的所有 b 时,我们需要对b添加限制使得 Ax=b 有解。

接下来我们举一个 3×4 的例子,将计算 Ax=0 的所有解,找出 b 位于列空间(这样的话Ax=b就是可解的)的条件。首先考虑一个最简单的,对于 1×1 系统的 0x=b ,一个方程和一个未知量有两种可能:

  1. 0x=b 除了 b=0 外无解, 1×1 矩阵的列空间只包含 b=0
  2. 0x=0 有无限多个解,零空间包含所有的 x ,一个个特解是xp=0,完整解是 x=xp+xn=x+(any x)

同样的现在开始考虑 2×2 的例子,对于第一行为1,第二行为2的矩阵是不可逆的: y+z=b1,2y+2z=b2 通常没有解。


这里写图片描述
图1

除了 b2=2b1 外没有其他解, A 的列空间只包含两元素比值为2的b;当 b2=2b1 时,有无限多个解, y+z=2,2y+2z=4 的特解是 xp=(1,1) ,图1中 A 的零空间包含(1,1)以及它的倍数 xn=(c,c)

y2y++z2z==24xp+xn=[11]+c[11]=[1c1+c]

梯度形U和行最简形R

我们从 3×4 矩阵开始,首先得到 U 进步一得到R

A=121363393274

主元 a11=1 非零,通常的初等变换将使这个主元下面的元素变为零,而坏消息出现在第二列:

A100300336236

第二个候选主元是零:我们不接受这种主元。我们试图找出它下面是否存在非零元素,从而通过交换即可,不幸的是下面都是零。如果 A 是方阵,那么这个信号告诉我们矩阵时奇异的,而对于长方形矩阵,还没有结束,接下来我们能做的就是继续看下一列,发现主元是3,从第三行减去第二行的两倍就得到了U

U=100300330230

严格来讲,我们接下来该处理第四列,因为第三个主元位置是零所以就不需要的。 U 是上三角矩阵但是它的主元不在对角线上,U的非零元素类似于阶梯形状,如图2 5×8 所示,星号表示的元素可能为零也可能不是零。


这里写图片描述
图2

对任何矩阵我们都可以得到这种阶梯形式 U

  1. 主元是每行第一个非零元素。
  2. 每个主元所在列的下面都是零。
  3. 每行的主元位于上面那行主元的右边,这样产生阶梯形式并且零行在最后。

因为我们从A开始,到 U 结束,大家可能会问:这和之前的A=LU一样吗?答案是肯定的,因为消元步骤没有变,每一步都是下面一行减去上面行的倍数,每一步的逆都是加上所减行的倍数,这些逆操作以正确的方式组合到一起直接到的 L

L=121012001andA=LU

注意 L 是方阵,它和A,U有相同的行数。

一般情况下都需要置换操作,而我们的例子不需要用置换矩阵 P 进行行变换,因为当主元不存在时,我们就进入下一列,不需要假设A是非奇异的:

2、对于任意 m×n 矩阵 A ,存在一个置换矩阵P,单位下三角矩阵 L m×n阶梯型矩阵 U ,使得PA=LU

现在我们比 U 更深入一点讨论行最简形R,使矩阵更简单。第二行的除以3使得所有主元为1,然后令主元的上面都为零,这一次我们我们从上面的行减去下面行的倍数,那么最终的结果就是最简行阶梯行矩阵 R

100300330230100300310210100300010110=R

矩阵 R A消元得到的最终结果。

那么可逆方阵的行最简阶梯型是什么样的呢?答案是单位矩阵。他们有完整的主元集合且都为1,主元上下又都为零,所以 A 可逆的情况下为单位矩阵。

对于5×8矩阵,图2给出了行最简形式 R ,四个主元所在的行和列组成了一个单位矩阵,从R中我们可以迅速找出 A 的零空间,Rx=0 Ux=0,Ax=0 有相同解。

主元变量和自由变量

我们的目标是求出 Rx=0 的所有解,主元是至关重要的:

Rx=100300010110uvwy=000

未知量 u,v,w,y 分成了两组,一组包含主元变量,他们对应主元所在的列,第一和第三列包含主元,所以 u,w 是主元变量;另一组组成自由变量,对应于没有主元的列,他们是第二和第四列,所以 v,y 是自由变量。

为了求出 Rx=0 的通解,我们可能给自由变量分配任意值,假设我们已经分配了 v,y 值,那么主元变量就完全可以用 v,y 的形式确定:

Rx=0u+3vw+yy==00uw==3v+yy(1)

完整解可以表示成这两个特殊解的组合:

x=3v+yvyy=v3100+y1011(2)

再次观察一下这个完整结,特殊解 (3,1,0,0) 有两个自由变量 v=1,y=0 ,另一个特解 (1,0,1,1) v=0,y=1 。所有解是这两个解的线性组合,求 Ax=0 解的最好方式是找出特解:

  1. 化简为 Rx=0 后,确定主元变量和自由变量
  2. 将一个自由变量设置为1,另一个设置为0求 Rx=0 ,得到的 x 是一个特解
  3. 第二步中每一个自由变量都会得到它对应的特解,这些特解的组合形成了零空间也就是Ax=0的所有解。

在向量 x 所在的四维空间里,Ax=0的解形成一个二维子空间也就是 A 的零空间。例如,N(A)由向量 (3,1,0,0),(1,0,1,1) 产生,他们的组合得到整个子空间。

这里有一个小技巧,使得从 R 中求特解很容易。3,0,-1和1 在R的非主元列,改变他们的符号找出特解中的主元。我们将方程(2)的特解放到矩阵矩阵 N 中,这样就能看出这个想法了:

N=31001011

自由变量是1和0,当自由变量移到方程(2)的右边时,他们的系数3,0,-1和1改变了符号,他们确定了特解中的主元变量。

这里给出一个重要的理论。假设矩阵列数比行数大 n>m ,因为 m 行最多有m 个主元,所以至少存在 nm 个自由变量,如果 R 的某些行是零,那么会有更多的自由变量;但是不管怎样,只有有一个是自由变量,这个自由变量可以分配任意值,由它得出下面的结论:

3、如果Ax=0未知量比方程多,那么它至少有一个特解:除了平凡解 x=0 外至少还有一个解。

肯定有无限多个解,因为任何常数 c 都能满足A(cx)=0,零空间包含通过 x 的直线,如果有额外的自由变量,那么零空间就不仅仅是n维空间的一条线,零空间的维数和自由变量,特解的数目是一样的。

中心思想(子空间的维数)在下一篇文章里会精确给出,为了零空间我们处理自由变量,为了列空间我们处理变量。

解Ax=b,Ux=c,Rx=d

b0 的情况不同于 b=0 A 上的行运算也必须在右边b上执行,我们先用字母 (b1,b2,b3) 找出可解的条件,然后令 b=(1,5,5) 找出所有解。

对于最开始的例子,我们令 Ax=b=(b1,b2,b3) ,两边都进行行运算得:

Ux=c10030033023uvwy=b1b22b1b32b2+5b1(3)

右边执行完前向消去后得到向量 c

对等式是否有解还不是很清楚,第三个等式比较麻烦,因为它的左边是零,除非右边b32b2+5b1=0,否则方程就不一致。即便未知数的个数比方程多,但依然有可能无解。我们知道如果 b 位于A的列空间,那么 Ax=b 就有解,子空间来自 A 的四个列:

121,363,393,274

虽然是四个向量,但是他们的组合只是三维空间中的一个平面,列2 是列1的三倍,第四列等于第三列减去第一列,这些相互依赖列如第二和第四列是没有主元的。

列空间 C(A) 可以用两种方式来描述,一方面,它是列1和3产生的平面,其他位于该平面的列不会得出新的列。等价的,它是满足 (b32b2+5b1=0 的所有向量 b 组成的平面;如果系统是可解的,这就是约束条件。几何上我们会看到(5,2,1)垂直于每个列。

如果 b 属于列空间,Ax=b的解很容易找到, Ux=c 的最后一个方程是 0=0 。对于自由变量 v,y ,我们可以像以前一样分配任意值,主元变量 u,v 依然通过回代确定。对于 b32b2+5b1=0 这个特例,选择 b=(1,5,5)

Ax=b121363393274uvwy=155

前向消元在左边得到 U ,右边得到c

Ux=c100300330230uvwy=130

最后一个方程 0=0 ,然后回代:

u+3v+3w3w++3y2y==31wu==12y3v+y

v,y 是自由变量:

x=uvwy=2010+v3100+y1011(4)

后两项可得出许多解, Ax=b 的每个解是特解和 Ax=0 解的和,方程(4)的特解通过将所有主元变量设为零得到。

几何上,这个解依然是一个二维平面,但是不是子空间,因为它不包含 x=0 ,它平行于我们之前得到的子空间。现在列出求解步骤:

  1. Ax=b 化为 Ux=c
  2. 将自由变量设为0,求出 Axp=0,Uxp=c 的一个特解。
  3. 求出 Ax=0(Ux=0 or Rx=0) 的解,对每一个自由变量轮流等于1即可,那么 x=xp+xn

当方程是 Ax=0 时,特解是零向量!它满足上面的模式,但是 xp=0 没有在(2)中写出来。

问题:化简形式 R 如何让解更加清楚?从我们的例子中可以看出,方程1减去方程2然后方程2除以它的主元。左边得到R,右边 (1,3,0) 变成 (2,1,0)

100300010110uvwy=210(5)

我们的特解 xp 的自由变量为 v=y=0 ,忽略掉2和4列,所以立马得到 u=2,w=1

现在我们总结一下,消元揭示了主元变量和自由变量,如果有 r 个主元,那么就有r个主元变量和 nr 个自由变量,这个重要的数字 r 有一个重要的名字——矩阵的秩。

4、假设消元Ax=b得到 Ux=c,Rx=d ,有 r 个主元行和r 个主元列。这些矩阵的秩是 r U,R的最后 mr 是零,所以如果 c,d 的最后 mr 个元素也是零的话就存在解。

完整解是 xp+xn ,一个是所有自由变量为零得特解 xp ,它的主元变量是 d r个元素,所以 Rxp =d。

零空间解 xn nr 个解的组合,每一个自由变量为1。解中的主元变量可以在 R 中对应的列中找到(符号相反)。

我们可以看出秩r非常重要,它是行空间中主元行的数目,也是列空间中主元列的数目,零空间中有 nr 个解,对 b,c,d mr 个可解条件。

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值