漫步线性代数十——线性无关,基和维数

m,n 没有给出线性系统实际大小的真实信息,在我们上文的例子中有三行和四列,但是第三行仅仅是前两行的组合,在消元后得到了零行,它对奇次问题 Ax=0 没有影响。第四列同样是相关的,列空间减到了二维平面。

最重要的数是矩阵的秩 r ,在消元过程中得到主元的个数是引入了这个数。等价的,最终矩阵U r 的非零行,这个定义是从计算中给出的,但是就这样结束不太妥当,因为这样的话秩给我们简单而直观的印象就是:矩阵A中无关行的数目。我们想要数学上的定义而不是计算。

本篇文章的目标就是就是和使用下面四个想法:

  1. 线性无关或相关
  2. 生成一个子空间
  3. 子空间的基(一组向量)
  4. 子空间的维度(一个数)

首先是定义线性无关。给定一组向量 v1,,vk ,对于他们的组合 c1v1+c2v2++ckvk (这种组合叫平凡组合),当权值 ci=0 时明显结果就是零向量: 0v1++0vk=0 ,现在的问题是是否只有这一种方式得到零,如果是,那么这些向量就是无关的。

如果存在任何其他组合得出零,那么他们就是相关的。

5、假设 c1v1++ckvk=0 只有在 c1==ck=0 时成立,那么向量 v1,,vk 是线性无关的。如果任何 c 不为零,那么这些向量是线性相关的。其中一个向量是其他向量的组合。

当所有向量从原点出发时,线性相关很容易在三维空间里可视化,如果两个向量在同一条线上,那么他们就是相关的,如果三个向量在同一个平面上,那么他们也是相关的。一般情况下随便选择三个向量,他们是线性无关的(不在一个平面上),四个向量在R3空间里总是线性相关的。

例1:如果 v1 是零向量,那么集合是线性相关的,例如我们可以令 c1=3 而其他 ci=0 ;这是非平凡组合,并且得到了零。

例2:矩阵

A=121363393250

是线性相关的,因为第二列是第一列的三倍,列组合的权值-3,1,0,0可以得到零。

行也是线性相关的,第三行是第二行的二倍减去第一行的五倍。

例3:下面三角矩阵的列是线性无关的:

A=300410252

寻找一个列组合使得:

c1300+c2410+c3252=000

我们发现 c1,c2,c3 只有全为零是才成立。首先从最后一个方程可以看出 c3=0 ,那么接下来我们发现 c2=0 ,然后 c1=0 。产生零向量的唯一组合是平凡组合, A 的零空间只包含零向量c1=c2=c3=0

当矩阵 A 的零空间N(A)=zero vector时,它的列是无关的。

同样有种方法来推断 A 的行是无关的,假设

c1(3,4,2)+c2(0,1,5)+c3(0,0,2)=(0,0,0)

从第一元素我们发现 3c1=0 orc1=0 ,那么第二个元素得到 c2=0 ,最后 c3=0

任何阶梯矩阵 U 的非零行一定是无关的,更进一步,如果我们选取主元所在的列,他们也是线性无关的,在上文的例子中

U=100300330210

主元列1和列3是无关的,不存在第三无关的列,自然更不会有第四个。列1和列4 也是无关的,但是如果最后一列的1变成0他们就是相关的。主元所在的列保证他们一定是无关的,一般的规则是:

6、阶梯矩阵 U 和最简矩阵R r 个非零行是线性无关的,所以包含主元的r列也是无关的。

例4 n×n 单位矩阵的列是无关的:

I=10001000001

这些列 e1,,en 表示 R4 空间内坐标轴方向上的单位向量

e1=[1000],e2=[0100],e3=[0010],e4=[0001].

R4 中许多四个向量的集合是无关的,这些 e 可能是最安全的。

为了确定任何集合v1,,vn是无关的,将他们放到 A 的列中,然后求解Ac=0;如果除了 c=0 外还有解,那么就是相关的。如果没有自由变量,除了 c=0 外零空间没有其他元素,那么向量就是无关的。如果秩小于 n ,那么至少有一个自由变量非零,列是相关的。

有种情况特别重要,有n个向量,每个向量有 m 个元素,那么A就是一个 m×n 矩阵,假设 n>m ,因为行没有列多,所以不可能有 n 个主元,秩肯定小于n,对于每个未知数大于方程分数的 Ac=0 肯定有 c0 的解。

7、对于 Rm n 个向量的集合,如果n>m,那么他们肯定是线性相关的。

例5 R2 中的三个列不可能无关:

A=[112312]

为了找出得到零的列组合,我们求 Ac=0

AU=[102111]

如果我们将自由变量 c3 赋值1,那么回代得到 c2=1,c1=1 ,根据这些权值,第一列减去第二列加上第三列的得到零。

生成子空间

现在我们定义一个向量集合生成一个空间是什么意思。 A 的列空间是由列生成的,他们的组合产生了整个空间:

8、如果向量空间V包含 w1,,w 所有线性组合,那么这些向量生成了空间, V 中的每一个向量v 都是 w 的某种组合:

v=c1w1++cw
} 不同的 w 组合可以得到同一个向量v,因为生成的集合可能非常大,所以 c 可以有个许多种选择

例6:向量w1=(1,0,0),w2=(0,1,0),w3=(2,0,0) R3 中生成了一个平面,前两个向量也生成了这个平面,而 w1,w3 只生成了一条线。

例7 A 的列空间就是它的列生成的空间,行空间是它的行生成的,A乘以任何 x 都给出一个列组合;向量Ax在它的列空间里。

来自单位矩阵的坐标向量 e1,,en 生成 Rn 空间,每个向量 b=(b1,,bn) 是这些列的组合,在这个例子中权值就是这些元素 bi 本身: b=b1e1++ bnen ,但是其他矩阵的列也生成 Rn

向量空间的基

为了确定 b 是否是列的组合,我们尝试求解Ax=b,为了确定列是否无关,我们求解 Ax=0 。生成涉及到列空间,无关涉及到零空间。坐标向量 e1,,en 生成 Rn ,他们是线性无关的。简答俩说,这个集合中没有一个向量被浪费掉,这引出了一个非常重要的概念:基。

9、 V 的基是一个向量序列,他们具有两个性质

  • 向量是线性无关的
  • 他们生成空间V

    组合的性质是线性代数的基本,这意味着空间中的每个向量都是基向量的组合,因为空间是有他们生成的。还意味着组合是唯一的:如果 v=a1v1++akvk,v=b1v1++bkvk ,那么他们相减为零 0=Σ(aibi)bi ,现在无关表现为每个系数 aibi 必须是零,因此 ai=bi 。对于 v 有且只有一种基向量的组合。

    线性代数中有些东西是唯一的,但有些不是,如一个向量空间有无限个不同的基。只有方阵是可逆的,那么它的列就是无关的,他们是Rn的一个基,如下面这个非奇异矩阵的两列就是 R2 的一个基:

    A=[1213]

    每个二维向量都是这些列的一个组合。

    例8:图1中的 xy 平面就是 R2 ,向量 v1 是线性无关的,但是它不能生成 R2 。三个向量 v1,v2,v3 肯定能生成 R2 ,但是他们是相关的。任何两个向量如 v1,v2 有两个性质——他们无关且生成空间,所以他们形成一个基,再次强调一下向量空间的基不是唯一的。


    这里写图片描述
    图1

    例9:四个列生成 U 的列空间,但是他们是相关的:

    U=100300330210

    有许多可能的基,但是我们给一个特殊的选择:包含主元的列(本例中是1,3列)作为列空间的一个基。这些列是无关的,而且很容易看出他们生成了空间。事实上, U 的列空间仅仅是R3中的 xy 平面, C(U) C(A) 的列空间不一样——但是无关列的数目是一样的。

    总结:任何矩阵列生成它的列空间。如果我们是无关的,那么列空间是他们的一个基——无论矩阵是方阵还是长方形矩阵。如果我们要求作为基的列生成整个空间 Rn ,那么矩阵是可以的方阵。

    向量空间的维度

    一个空间由无限多个不同的基,但是有些东西是他们共有的,基向量的数目是空间本身的一种性质:

    10、一个向量空间 V 的任何两个基包含的向量个数一样,这个数是所有基共享的,表达了空间自由度的个数,也就是V的维度。

    我们必须证明这个事实:所有可能的基包含的向量数一样。图1中的 xy 平面每个基中有两个平面;它的维度为2。在三维空间里我们有三个向量,他们分别沿 xyz 轴。空间 Rn 的维度是 n U的列空间维度为2;它是 R3 的子空间。零矩阵非常特殊,因为它的列空间只有零向量,空间是这个空间的基,所以维度为零。

    这里我们给出线性代数里最大的一个定理:

    11、如果 v1,,vm,w1,,wn 都是同一个向量空间的基,那么 m=n ,向量的个数是一样的。

    证明:假设 w v多(n>m),那么我们将产生一个矛盾,因为 v 形成一个基,他们必须生成一个空间,每个w可以写成 v 的一个组合:如果w1=a11v1++am1vm,这是矩阵 VA 的第一列:

    W=[w1w2wn]=[v1vm]a11am1=VA

    我们不知道每个 aij ,但是我们知道 A 的大小(m×n),第二个向量 w2 也是 v 的一个组合,这个组合系数放到A的第二列。因为 A 矩阵n>m,所以 Ax=0 有非零解,那么 VAx=0 也有非零解!这样的话 w 不能是一个基——所以n>m不成立。

    如果 m>n ,我们交换一下 v,w 并重复上面的操作。避免矛盾的唯一方法是 m=n ,这就证明了 m=n ,重复一遍:一个空间的维度是基中向量的个数。

    这个证明说明 Rm 中的 m+1 个向量肯定是相关的,事实上我们可以看出一般结论:对于 k 维的子空间,大于k的向量集合是相关的。

    有另一个对偶的定理,我们从一个小点的或大点的向量集合开始,用一个基结束:

    12、 V 中任何线性无关的集合通过添加更多的向量可以扩展成一个基。

    生成V的任何集合通过去掉一些向量可以减为一个基。

    这个观点说明基是一个最大无关集合,在没有丧失无关性的前提下它无法变得更大,同时它也是最小生成集合,如果变得小店它就无法生成空间。

    大家必须注意维度有两种不同的使用方式。我们说四维向量,意味着向量在 R4 空间里,现在我们已经定义了四维子空间;例如 R6 (第一个和最后一个元素为零)空间里的向量集合,四维子空间的成员是像 (0,5,1,3,4,0) 这样的六维向量。

    最后一点是关于线性代数的语言,我们从来没有用过矩阵的基或空间的秩或基的维度这些词汇,这些短语都是没有任何意义的,列空间的维度等于矩阵的秩,我们将在下篇文章中证明。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值