漫步线性代数十三——线性变换

我们已经知道了矩阵 A 的四个基本空间,它的零空间使得向量变成零向量,因为Ax是列的组合,所以所有向量都位于列空间里。之后我们还会看到一些每秒的东西—— A 将它的行空间变成列空间,在这些维度为r的空间上矩阵是可逆的,这是矩阵 A 的实际操作,还有一部分被零空间和左零空间隐藏了。

假设x是一个 n 为向量,当A乘以 x 的时候,它将向量变成了一个新的向量Ax,对于 Rn 空间里的所有点 x 都会发生这种变化,整个空间被矩阵A变换了,图1给出了矩阵的四种变换:


这里写图片描述
图1:四种矩阵的变换

1、 A=[c00c] ,它是单位矩阵乘以常数得到的, A=cI ,将每个向量拉伸 c 倍,整个空间被拉长或收缩。

2、A=[0110],旋转矩阵,它将空间绕原点进行旋转,图中的例子是旋转了90度,每个点从 (x,y) 变成 (y,x)

3、 A=[011c] ,反射矩阵,它将每个向量做关于某个镜面的反射,图中的镜面是直线 y=x ,像 (2,2) 这类点不会发生变化,像 (2,2) 这类点翻转成 (2,2) 。像 v=(2,2)+(2,2)=(4,0) 这类点一部分变化一部分不变, Av=(2,2)+(2,2)=(0,4)

反射矩阵也是置换矩阵!在代数上它非常简单,就是将 (x,y) 变成 (y,x) ,而在几何图像上被掩盖了。

4、 A=[1000] ,投影矩阵,它将整个空间投影到低维子空间上(不可逆),图中是将平面的每个向量 (x,y) 变为水平轴上最近的点 (x,0) 。这个轴是 A 的列空间,投影为(0,0) y 轴是零空间。

这些例子也可以放到三维空间里,此时矩阵将是在空间中进行缩放,沿着平面旋转或反射,将一切事物投影到二维平面上。另外知道矩阵不能做什么也是很重要,某些变化T(x)利用 Ax 就做不到:

  • 不可能移动原点,因为对于每个矩阵 A0=0
  • 如果向量 x 变成x,那么 2x 肯定是 2x 。一般来说 cx 肯定变成 cx ,因为 A(cx)=c(AX)
  • 如果向量 x,y 分别变成 x,y ,那么他们的和 x+y 肯定变成 x+y ,因为 A(x+y)=Ax+Ay

矩阵乘法进行变换的时候施加这些规则,第二个规则包含第一个( c=0 得到 A0=0 ),对于第三个规则,考虑 (4,0) 关于45 度直线的反射,它可以分成 (2,2)+(2,2) ,而且这两部分互为反射。同样的考虑投影:先分成两部分,然后分别投影并将投影相加。这些规则应用在任何矩阵的变换上。

他们的重要性还体现在名字的:符合三条规则的变换叫做线性变换。这些规则可以总结为一个:

20、对于任意的数 c,d 和向量 x,y ,矩阵乘法满足线性规则:

A(cx+dy)=c(Ax)+d(Ay)(1)
满足这个要求的任何变换 T(x) 是一个线性变换。

任何矩阵都产生一个线性变换,那么反过来说:每一个线性变化都对应一个矩阵吗?本篇文章就是找出这个答案:是的。这是步入线性代数的基础,从性质(1) 开始引申出许多其他结论。现在我们直接从矩阵开始,看看他们如何表示线性变换。

一个变换没必要必须从 Rn 变到相同的空间 Rn ,允许将 Rn 中的向量变成不同空间 Rm 中的向量,那就是 m×n 矩阵所做的事!原始向量 x n 个元素,变换向量 Ax m 个元素,线性变换的规则同样满足长方形矩阵,所以他们也生成线性变换。

更进一步,线性条件(1)的操作有加法和标量乘法,但是x,y 没有必要是 Rn 的列向量,这些不是唯一的空间,根据定义,任何向量空间都存在组合 cx+dy ,他们可以是多项式,也可以是矩阵,也可以是函数 x(t),y(t) ,只要变换满足(1),那它就是线性的。

我们举一个空间 Pn 上的例子,这些向量是次数为 n 的多项式p(t),他们看起来像 p=a0+a1t++antn ,并且向量空间的维数是 n+1 (因为有常数项)。

例1:微分运算 A=d/dt 是线性的:

Ap(t)=ddt(a0+a1t++antn)=a1++nantn1(2)

A 的零空间是一维的常数空间:da0/dt=0,列空间是 n 为空间Pn1;方程(2)的右边一直在空间里。零度(=1)和秩(= n )的和是原始空间Pn的维数。

例2:从0到 t 的积分运算也是线性的:

Ap(t)=t0(a0+a1t++antn)dt=a0t++ann+1tn+1(3)

这次没有零空间(除了零向量外)但是积分没有得到 Pn+1 中的所有多项式,方程(3)的右边没有常数项,可以常数多项式在左零空间里。

例3:一个确定多项式像 2+3t 乘以多项式是线性的:

Ap(t)=(2+3t)(a0+a1t++antn)=2a0++3antn+1

Pn 变换到 Pn+1 ,除了 p=0 外没有零空间。

在这些例子中,线性都不太难验证,有些看起来还挺有趣。是金子总会发光,这种性质有点像自生的属性,不会因为外界条件而改变。无关怎样,变换有非常重要的性质。但是许多变化都不是线性的,例如平方多项式( Ap=p2 ),或加一( Ap=p+1 ),或保持正系数( A(tt2)=t )。只有线性变换才能得出矩阵。

矩阵表示变换

线性有个至关重要的结论:如果我们知道基中每个向量的 Ax ,那么我们就知道整个空间中每个向量的 Ax 。假设基包含 n 个向量x1,,xn,所以其他向量 x 都是基向量的组合,那么线性就确定了Ax

x=c1x1++cnxn,Ax=c1(Ax1)++cn(Axn)(4)

变换确定了基向量后,根据线性就已经确定了其他向量。对于两个向量 x,y ,根据(1)将得到(4)中的条件,对于基来说,这些向量的变换是比较自由的,但是当他们确定以后,每个向量的变换就确定了!

例4:什么样的线性变化将 x1,x2 变成 Ax1,Ax2

x1=[10]Ax1=234;x2=[01]Ax2=468

满足条件的矩阵为:

A=234468

我们从另一个基 (1,1),(2,1) 开始, A 是唯一的线性变换:
A[11]=6912A[21]=000

加些来我们找出表示微分和积分的矩阵。首先我们必须确定一个基,对于3次多项式,很自然的选择四个基向量:

p1=1,p2=t,p3=t2,p4=t3

基不是唯一的,但是某些选择确实必须的而且也是最方便的。这四个基向量的导数是 0,1,2t,3t2

d/dtAp1=0,Ap2=p1,Ap3=2p2,Ap4=3p3(5)

d/dt 是一种运算,就像矩阵一样,但是是什么样的矩阵呢?考虑通常的四维空间,坐标向量为 p1=(1,0,0,0),p2=(0,1,0,0),p3=(0,0,1,0),p4=(0,0,0,1) ,由(5)确定的矩阵是:

Adiff=0000100002000030

Ap1 是第一列,也就是零, Ap2 是第二列,也就是 p1 Ap3 2p2 Ap4 3p3 ,零空间包含 p1 ,列空间包含 p1,p2,p3 (立方的导数是平方)。根据线性,像 p=2+tt2t3 的导数可以确定出来:

dpdt=Ap00001000020000302111=123012t3t2

总而言之,矩阵携带了所有的信息,如果基和矩阵都是已知的,那么每个矩阵的变换就是已知的。

信息编码很容易,将一个空间变换到它本身,一个基就足够了,从一个空间到另一个空间的变换需要其他的基。

21、假设向量 x1,,xn 是空间 V 的一个基,向量y1,,ym W 的一个基,从V W 的线性变换T A 来表示,将T应用到第 j 个基向量xj得到第 j 列,将T(xj)写成 y 组合的形式为:

T(xj)=Axj=a1jy1+a2jy2++amjym(6)

对于微分矩阵,列1来自于第一个基向量 p1=1 ,它的导数为0,所以列1为0,最后一列来自 (d/dt)t3=3t2 。因为 3t2=0p1+0p2+3p3+0p4 ,所以最后一列包含0,0,3,0,法则(6)一次得到矩阵的一列。

对于积分同样如此,它是从三次方到四次方,也就是 V=P3 W=P4 ,所以我们需要 W 的一组基,很自然的选择是y1=1,y2=t,y3=t2,y4=t3,y5=t4,也就是四次多项式。应用积分到 V 中每个基向量得:

t01dt=torAx1=y2,,t0t3dt=14t4orAx4=14y5

Aint=01000001200000130000014

积分和微分时逆运算,或者说从微分得到的积分可以还原到原来的函数,为了用矩阵表示,我们需要将微分矩阵变为 4×5 :

Adiff=00001000020000300004AdiffAint=1111

微分是积分的左逆,长方形矩阵不可能两边同时有逆!所以反过来 AintAdiff=I 是不成立的, 5×5 的话在第一行得到零,常数的导数为零,而 AintAdiff 的其他行和单位矩阵一样,因为 tn 微分后在积分还是 tn

旋转矩阵Q,投影矩阵P,反射矩阵H

本部分我们介绍90度的旋转矩阵,向 x 轴的投影矩阵和45度线的反射矩阵,他们的矩阵都很简单:

Q=[0110]P=[1000]H=[0110]

xy 平面上的基本线性变换都是比较简单的,但是旋转其他角度,投影到任何一条线上,沿任何线做反射也是很容是可视化的,他们依然是线性变换,原点都是固定的: A0=0 ,肯定能用矩阵来表示。使用自然基 (1,0)T,(0,1)T 就可以找到这些矩阵。

1、旋转矩阵,图2所示旋转角度为 θ ,同时也显示了对两个基向量的效果。第一个变成 (cosθ,sinθ) ,长度为1保持不变;第二个基向量变成 (sinθ,cosθ) ,根据规则(6),这些数放到矩阵的列中(我们用 c,s 分别表示 cosθsinθ ):

Qθ 的逆等于 Qθ 吗?是的。

QθQθ=[cssc][cssc]=[1001]

Qθ 的平方等于 Q2θ 吗?是的。

Q2θ=[cssc][cssc]=[c2s22cs2csc2s2]=[cos2θsin2θsin2θcos2θ]

Qθ Qφ 的乘积等于 Qθ+φ 吗?是的。

QθQφ=[cosθcosφsinθsinφsinθcosφ+cosθsinφ]=[cos(θ+φ)sin(θ+φ)]

最后一种情况包含前两种情况,当 φ=θ 时就是第一种情况,当 φ=+θ 时就是第二种情况。这三个方程由三角恒等式确定,毫无例外所有答案都是肯定的,矩阵乘法定义的非常精确,这样的话他们的乘积就对应着变换的乘积。

22、假设 A,B 分别是从 V W和从 U V的线性变换,他们的乘积 AB U 的一个向量u开始,变成 V 中的Bu,最后是 W 中的ABu。组合 AB 依然是线性变换(从 U W),它的矩阵是矩阵 A,B 的乘积。

对于 AdiffAint ,这个组合变换得到单位矩阵( AintAdiff 将常数消灭掉了)。对于两个旋转操作,乘法的顺序无所谓,那么 U=V=W xy 平面, QθQφ QφQθ 是一样的。对于一个旋转和一个反射操作,顺序不同结果就不同。

注意:为了构建矩阵,我们需要 V,W 的基,然后 U,V 的基。为了跟 V 保持一样的基,矩阵乘法直接从U的基变成 W 的基,如果我们知道了变换A的矩阵(我们叫做 [A] ),那么规则22就变得非常简洁: [AB]=[A][B] ,前面讲过的乘法规则完全由这个要求确定——它肯定对应着线性变换的乘积。


这里写图片描述
图2:旋转矩阵(左),反射矩阵(右)

2、投影矩阵,图2也给出了 (1,0) θ 直线的投影,投影长度是 c=cosθ ,注意投影点不是 (c,s) ;向量长度为1,所以我们必须乘以 c 。同样,(0.1)的投影长度为 s ,投影点是s(c,s)=(cs,s2),它是投影矩阵 P 的第二列:

p=[c2cscss2]

这个矩阵没有逆,因为这个变换不是可逆的。垂线上的点映射到原点上;这条线是 P 的零空间。θ线上的点映射到自身!对他们进行两次映射效果和一次是一样的,也就是 P2=P

P2=[c2cscss2]2=[c2(c2+s2)cs(c2+s2)cs(c2+s2)s2(c2+s2)]=P

其中 c2+s2=cos2θ+sin2θ=1 。投影矩阵等于它自身的平方。

3、反射矩阵,图3给出了 (1,0) 关于 θ 线的反射,反射的长度等于原始长度,就像旋转操作那样——但是这里 θ 线保持不变。垂线的方向反转了,

H=[2c212cs2cs2s21]

矩阵 H 有一个特别的性质:H2=I,两次反射回到原始情况。一次反射是自身的反转: H=H1 ,从几何上看非常明显。反射和映射的关系式: H=2PI ,这意味着 Hx+x=2Px ——反射的加上原始的等于投影的两倍,另外这还证实了 H2=I

H2=(2PI)2=4P24P+I=I,P2=P


这里写图片描述
图3:反射:几何和矩阵

我们需要强调一下,矩阵依赖于所选择的基。假设第一个基在 θ 线上,第二个基向量跟它垂直:

  • 对于投影,这个矩阵按如下方式构建:第一列就是第一个基向量(投影到自身),第二列就是投影为零的基向量。
  • 对于反射,第二个基向量通过反射变成第一个向量的反方向,那个反射轴就是第二列。当矩阵 H,P 的基一样时,矩阵 H 依然满足2PI
  • 对于旋转,矩阵不发生变换,跟之前一样。

选择一个最好的基明显是整个问题的核心,之后我们会形式介绍这个。

当线性变换不变时,基的改变会影响到矩阵,就像矩阵 A 变为S1AS,由此可见,一个变换是由不同的矩阵表示出来,之后要将的特征值理论会导出公式 S1AS 和最好的基。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值