漫步微积分三十七——力和功

首先提一个常识,在移动的对象上施加一个发力,如举起一块很沉的石头,我们感觉需要很大的力气或做功。在我们定义物理上功的概念之前,我们深信移动相同的距离,举起20磅的石头所做的功是l0磅的两倍,并且俱到3英尺所做的功是1 英尺的三倍。这些想法给出了我们基本的定义:如果恒力 F 作用的距离为d,那么这个过程中完成的功为力和它作用距离的乘积

work =force distance

或者

W=Fd(1)

这里的力方形和运动方向一致。

正如我们所知,由于地球的吸引力,有“重量”的对象存在重力。对于处于或接近地球表面的物体,这个力基本上是大小恒定而且总是指向地心。因此,如果一箱重20磅的食品是从地上抬起放到一张3英尺高的桌子上,那么定义(1)告诉我们做了60 ftlb 的功;但如果盒子抬进另一个房间但没有提高或降低它,放在一个架子上,那么这个操作完成后没有做功,因为盒子在力方向移动的距离为零。如果一台拖拉机拖动用恒力2牛拖动一块巨石走了18英尺,那么拖拉机所做的功为36 inton (或3 ftton )

这个定义只对恒力 F 满足。然而,在用力的过程中许多力都不保持恒定。对于类似的情况,我们可以将过程分成很多小部分然后通过积分得到总的功。

这种想法用下面拉伸弹簧的操作进行说明。

例1:某弹簧自然长度为16in。当它被拉伸到 xin 时,胡克定律指出弹簧的恢复力为 F=kx pounds ,其中 k 为常数,它称为弹力系数,可以认为是弹簧刚度的度量。对题中讨论的弹簧,需要8 lb的力来才能将它延伸 2 in 。那么,从自然长度拉伸到 24 in 需要完成的功是多少?

:首先,根据事实 x=2,F=8 可以求出 k 8=k2,所以 k=4,F=4x 。为了说明我们的想法,我们画一个自然长度下的弹簧,以及拉伸 x 时的状态(图1)。然后,我们想象弹簧拉伸很小的距离dx,那么在这距离增量内力变化很小,基本上可以认为是恒定的。所以这段距离做的功是

dW=F dx=4x dx(2)

整个拉伸过程中所做的功为

W=dW=Fdx=804xdx=2x208=128 inlb

因为弹簧从16增到24时 x 是从0增加到8,所以积分限为0到8。


这里写图片描述
图1

用相似的方式,我们可以考虑,给定物体移动的方向作用在上面的力所做的功,这个力不限制必须是恒力,也可以是变化的力。如果我们引入x轴,从 x=a 移动到 x=b 的过程中力为 F(x) ,那么 dW=F(x)dx 是功的元素

W=dW=baF(x)dx(3)

给出了该过程的总功。这个公式既可以作为定义,也可以作为计算功的方法。下一个例子我们引用到不同的情景中。

例2:根据牛顿的万有引力定律,任何两个物质为 M m的物体互相之间存在吸引力 F ,它的大小与质量的乘积成正比,与它们之间距离r的平方成反比

F=GMmr2

其中 G 叫做引力常数。如果M看做一个质点,那么将 m r=a移动到 r=b,a<b 需要做多少功?

:功的元素为

dW=F dr=GMmdrr2(4)

所以总功为

W=dW=GMmbadrr2=GMm(1r)ba=GMm(1a1b)

考虑如果最终位置 r=b 非常远,以致于 b ,那么功 W 将接近极限值GMm/a。将 m r=a移到无穷远处(也就是完全将两个物体分开)所需要做的功;它叫做两个粒子的势能。

前面处理的例子都是距离一定,作用的力是变化的。接下里的例子与此不同,物体的一部分在同一个力下移动不同的距离,总功可以通过计算部分功的和求出来。

例3:考虑一个底边半径为 r 高为h的圆柱体,其中水深为 D (图2)。那么将水移到桶的边缘需要做多少功?(通常我们用w表示水的质量密度(weight-density) 来表示,也就是单位体积的质量)

:这个问题的本质是每一滴水必须从初始位置移到桶的边缘。对边缘下方同一距离的所有水滴,这个过程做的功是一样的。这表明我们可以考虑很薄的水平圆柱层,在高为 x 处的厚度为dx,那么将这部分移到桶边缘的所做的功是 dW ,同样对其它层也用这种方法,然后从 0 D进行相加记得总功。另外从图中可以看出,每层的体积为 πr2dx ,所以质量为 wπr2dx ,功的元素为

dW=wπr2dx(hx)(5)

因此总共为

W=dW=wπr2D0(hx)dx=wπr2(hx12x2)D0=wπr2(hD12D2)

重新强调一下:本例题方法的关键是薄的圆柱层内所有的水移动了相同的距离。

我们应该看到定义(1)是这些例子的关键所在。公式(2)(4)(5)仅仅是(1)在不同情景下的版本。

接下来我们讨论另一个重要的概念:能量

考虑作用变力 F 作用在质量为m的物体上移动了一段距离,这里我们采用 x 轴。这个力不仅做了功,而且还产生了加速度dv/dt,根据牛顿第二运动定律

F=mdvdtwhere v=dx/dt(6)

由力产生的加速度改变了物体的速度,也叫作动能或能量,它的定义式为

kinetic energy =12mv2

现在我们证明下面的力学定理:

上面描述的过程中,力 F 所做的功等于物体动能的变化量;特别地,如果物体开始是静止的,那么力所做的功等于物体获得的动能。

这个证明很容易。我们首先将(6)写为

F=mdvdt=mdvdxdxdt=mvdvdx

利用公式(3)得

W=baFdx=bamvdvdx=dx=vbvamvdv=12mv2vbva=12mv2b12mv2a

所以功 W 等于动能的变化量。


这里写图片描述
图2

注解:对某些物理情况,它可能介绍势能的概念,下面,我们就非常简明的解释一下。为了计算(7)我们使用公式(3),假定未指定的力F是连续函数且只依赖 x 轴,其区间为axb。(注意,摩擦力没有这种属性;因为它不仅取决于物体 m 的位置,还有移动方向)。这个假设保证存在函数V(x)使得 dV/dx=F(x) 。因此我们可以用另一种方式来计算功 w 如下所示:

W=baF(x)dx=baF(x)dx=V(x)ab=V(a)V(b)(7)

所以(7)可是写成

12mv2b12mv2a=V(a)V(b)

或者

12mv2b+V(b)=12mv2a+V(a)(8)

(9)的左边我们去掉下标,并用 V(x) 代替 V(b) ,这样做是为了强调 v,V(x) 是变量;在右边 va,V(a) 保持不变。于是(9)就写成

12mv2+V(x)=12mv2a+V(a)=E(9)

其中常数 E 叫做物体的总能量。函数V(x)叫做物体的势能,(10)表明动能和势能的和是常数。这就是能量守恒定律,经典物理学中基本原则之一。

从(10)中可以看出,如果 F(x) 作功,那么动能将增加,势能同样如此。所以可以看做势能转化成等量的动能。

我们指出 V(x) 的定义表明它这个函数通过增加一个常数就能确定,所以为了方便,在任何特定情况下我们都选择零势能,此外,大家可能疑惑定义 V(x) 时候的代数符号,这样做的目的是保证(10)中出现的是正好而不是负号,这样的话,我们可以说动能和势能之和而不是它们的差是常数。

例4:从物理上看,人类的心脏是一种泵。血液通过二尖瓣(图3)进入左心室,然后通过主动脉瓣迸出到身体各处。每次收缩期间的舒张压是80 mm Hg
收缩压是120 mm Hg 。现在我们计算一次心跳左心室做的功,假设心室的体积在收缩的时候减少约75 cm3 。我们需要知道 100 mm Hg1.33×105 dynes/cm2

为便于理解泵的工作原理,我们将心脏想象成如图所示的从 x=0 x=a 的活塞运动,而不是肌肉收缩。如果 A 是活塞头的面积,那么aA=75。从图4可以看出活塞工作的压强 P(x)

P(x)=40ax+80

我们现在把这一切放在一起,观察到一次向上运动的过程中施加在活塞上的力是 P(x)A ,所以这个过程中所做的功为

W=a0P(x)Adx=Aa0(40ax+80)dx=A(20ax2+80x)a0=100aA(1.33×105 dynes/cm2)(75 cm3)107 dynecm1 joule0.74 ftlb


这里写图片描述
图3

对一个体重120磅,脉率为60的人来说,我们可以利用计算器快速算出一天24小时心脏做的功可以将这个人垂直举起500 多 ft 。人类心脏是重要的器官,但是被我们低估了!


这里写图片描述
图4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值