首先提一个常识,在移动的对象上施加一个发力,如举起一块很沉的石头,我们感觉需要很大的力气或做功。在我们定义物理上功的概念之前,我们深信移动相同的距离,举起20磅的石头所做的功是l0磅的两倍,并且俱到3英尺所做的功是1 英尺的三倍。这些想法给出了我们基本的定义:如果恒力
F
作用的距离为
或者
这里的力方形和运动方向一致。
正如我们所知,由于地球的吸引力,有“重量”的对象存在重力。对于处于或接近地球表面的物体,这个力基本上是大小恒定而且总是指向地心。因此,如果一箱重20磅的食品是从地上抬起放到一张3英尺高的桌子上,那么定义(1)告诉我们做了60 ft−lb 的功;但如果盒子抬进另一个房间但没有提高或降低它,放在一个架子上,那么这个操作完成后没有做功,因为盒子在力方向移动的距离为零。如果一台拖拉机拖动用恒力2牛拖动一块巨石走了18英尺,那么拖拉机所做的功为36 in−ton (或3 ft−ton )
这个定义只对恒力 F 满足。然而,在用力的过程中许多力都不保持恒定。对于类似的情况,我们可以将过程分成很多小部分然后通过积分得到总的功。
这种想法用下面拉伸弹簧的操作进行说明。
例1:某弹簧自然长度为
解:首先,根据事实
x=2,F=8
可以求出
k
。
整个拉伸过程中所做的功为
因为弹簧从16增到24时
x
是从0增加到8,所以积分限为0到8。
图1
用相似的方式,我们可以考虑,给定物体移动的方向作用在上面的力所做的功,这个力不限制必须是恒力,也可以是变化的力。如果我们引入
给出了该过程的总功。这个公式既可以作为定义,也可以作为计算功的方法。下一个例子我们引用到不同的情景中。
例2:根据牛顿的万有引力定律,任何两个物质为
M
和
其中
G
叫做引力常数。如果
解:功的元素为
所以总功为
考虑如果最终位置
r=b
非常远,以致于
b→∞
,那么功
W
将接近极限值
前面处理的例子都是距离一定,作用的力是变化的。接下里的例子与此不同,物体的一部分在同一个力下移动不同的距离,总功可以通过计算部分功的和求出来。
例3:考虑一个底边半径为
r
高为
解:这个问题的本质是每一滴水必须从初始位置移到桶的边缘。对边缘下方同一距离的所有水滴,这个过程做的功是一样的。这表明我们可以考虑很薄的水平圆柱层,在高为
x
处的厚度为
因此总共为
重新强调一下:本例题方法的关键是薄的圆柱层内所有的水移动了相同的距离。
我们应该看到定义(1)是这些例子的关键所在。公式(2)(4)(5)仅仅是(1)在不同情景下的版本。
接下来我们讨论另一个重要的概念:能量
考虑作用变力
F
作用在质量为
由力产生的加速度改变了物体的速度,也叫作动能或能量,它的定义式为
现在我们证明下面的力学定理:
上面描述的过程中,力 F 所做的功等于物体动能的变化量;特别地,如果物体开始是静止的,那么力所做的功等于物体获得的动能。
这个证明很容易。我们首先将(6)写为
利用公式(3)得
所以功
W
等于动能的变化量。
图2
注解:对某些物理情况,它可能介绍势能的概念,下面,我们就非常简明的解释一下。为了计算(7)我们使用公式(3),假定未指定的力
所以(7)可是写成
或者
(9)的左边我们去掉下标,并用
V(x)
代替
V(b)
,这样做是为了强调
v,V(x)
是变量;在右边
va,V(a)
保持不变。于是(9)就写成
其中常数
E
叫做物体的总能量。函数
从(10)中可以看出,如果 F(x) 作功,那么动能将增加,势能同样如此。所以可以看做势能转化成等量的动能。
我们指出 V(x) 的定义表明它这个函数通过增加一个常数就能确定,所以为了方便,在任何特定情况下我们都选择零势能,此外,大家可能疑惑定义 V(x) 时候的代数符号,这样做的目的是保证(10)中出现的是正好而不是负号,这样的话,我们可以说动能和势能之和而不是它们的差是常数。
例4:从物理上看,人类的心脏是一种泵。血液通过二尖瓣(图3)进入左心室,然后通过主动脉瓣迸出到身体各处。每次收缩期间的舒张压是80
mm Hg
收缩压是120
mm Hg
。现在我们计算一次心跳左心室做的功,假设心室的体积在收缩的时候减少约75
cm3
。我们需要知道
100 mm Hg≅1.33×105 dynes/cm2
。
为便于理解泵的工作原理,我们将心脏想象成如图所示的从
x=0
到
x=a
的活塞运动,而不是肌肉收缩。如果
A
是活塞头的面积,那么
我们现在把这一切放在一起,观察到一次向上运动的过程中施加在活塞上的力是
P(x)A
,所以这个过程中所做的功为
图3
对一个体重120磅,脉率为60的人来说,我们可以利用计算器快速算出一天24小时心脏做的功可以将这个人垂直举起500 多
ft
。人类心脏是重要的器官,但是被我们低估了!
图4