漫步凸分析一——仿射集

本文中,用 R 表示实数,Rn表示实 n x=(ξ1,,ξn)的向量空间,除非特别指明,否则都是在 Rn 中讨论。在 Rn 中两个向量 x,x 的内积表示成

x,x=ξ1ξ1++ξnξn

符号 A 既可以表示m×n的实矩阵 A ,也可以表示从Rn Rm 相应的线性变换 xAx 。转置矩阵以及从 Rm Rn 相应的伴随线性变换都用 A 表示,所以大家需要知道下式的含义

Ax,y=x,Ay

(在表示向量的符号中,*不进行任何操作;考虑到矩阵乘法,所有向量都看做列向量。我们不断的使用向量符号是为了让大家熟悉它的二元性,也就说说,既可以将向量看做点,也可以将向量看成线性函数的 n 元系数)所有证明过程都会用符号|| 表示证明结束。

如果 x,y Rn 中不同的点,那么形如下面的点集就叫做通过 x,y 的直线

(1λ)x+λy=x+λ(yx),λR

M Rn的一个子集,如果对于每一个 xM,yM,λR ,可得 (1λ)x+λyM ,那么我们称这个子集为仿射集(affine set)。

空集 和空间 Rn 本身就是仿射集的极端例子,另外 M 仅有一个孤立点的情况也满足定义。一般来讲,仿射集必须包含通过任意两个点的整条直线,直观印象是不存在弯曲的部分,就像空间中的一条直线或者一个平面。

仿射集正式的几何意义可能是从线性代数中Rn子空间的定理发展来的,仿射集和子空间之间准确的对应关系可以用下面两个定理描述。

定理1.1 Rn 的子空间是包含原点的仿射集。

证明:每个子空间包含0并且对于加法和标量乘法封闭,所以它是一个仿射集。

反过来,假设 M 是一个包含0的仿射集。对于所有的xM,λR,我们有

λx=(1λ)0+λxM

所以 M 对标量乘法封闭。接下来,如果xM,yM,我们有

12(x+y)=12x+(112)yM

因此

x+y=2(12(x+y))M

所以 M 也对加法封闭,故它是一个子空间。||

对于 MRn,aRn ,将 M 平移a定义为集合

M+a={x+a|xM}

仿射集平移后依然是仿射集,很容易验证这个结论。

对于仿射集 M ,如果对于某个a,M=L+a,那么我们说 M 平行于仿射集L。很明显,“ M L平行”是 Rn 中仿射子集集类的一个等价关系,需要注意的是,这个平行定义和我们平常的平行定义是不同的,例如我们不能说一条线平行于一个平面,但可以说一条线平行于给定平面中的一条线,反之亦然。

定理1.2 每个非空仿射集 M 平行于唯一的子空间L L 由下式给出

L=MM={xy|xM,yM}

证明:我们首先说明 M 不能与两个不同的子空间平行。平行于M的子空间 L1,L2 互相是平行的,那么存在某个 a 使得L2=L1+a。因为 0L2 ,所以 aL1 ,因此 aL1 。但是这样的话 L1L1+a=L2 ,同理我们可以得到 L2L1 ,所以 L1=L2 ,这就建立了唯一性。接下来通过观察得到,对于所有 yM,My=M+(y) M 的一个平移操作,并且包含0,根据定理1.1以及刚刚的证明,这个仿射集肯定有唯一一个平行于M的子空间 L ,因为无论选择哪个yM L=My 恒成立,所以我们得出 L=MM ||

我们将非空仿射集的维数定义为与它平行的子空间的维数,(按照惯例,将空集 的维数定义为-1)那么维数为0,1 和2的仿射集自然就称为点,线和面。 Rn (n1) 维的仿射集叫做超平面,超平面非常重要,因为他们不仅表示 n 维几何中的点,还具有其他含义。

超平面和其他仿射集也许能用线性函数和线性方程表示,我们可以从Rn的正交理论来推断这种形式。回忆一下,根据定义, xy 意味着 x,y=0 ,给定 Rn 的一个子空间 L ,使得xL(即对于每一个 yL xy 恒成立)的向量 x 的集合叫做L的正交补,用 L 表示。当然,这是另一个子空间,并且

dimL+dimL=n

L 的正交补 (L) L 。如果b1,,bm L 的一个基,那么xL等价于 xb1,,xbm 。特别地, Rn (n1) 维子空间是一维子空间的正交补,一维子空间的基由一个非零向量 b 构成,因此(n1)维子空间就是形如 {x|xb} 的集合,其中 b0 。超平面就是集合平移后的结果。但是

{x|xb}+a={x+a|x,b=0}={y|ya,b=0}={y|y,b=β}

其中 β=a,b ,由此得到超平面的一个特征,即定理1.3。

定理1.3 给定 βR 和一个非零向量 bRn ,集合

H={x|x,b=β}

Rn 中的一个超平面,而且每个超平面可能用这种方式表示。

在定理1.3中,向量 b 叫做超平面H的法向量, H 的每个法向量要么是b的正倍数,要么是负倍数。也就是说每个超平面有两边,就像 R2 中的一条直线或者 R3 中的一个平面,注意 R4 中的一个平面没有两边。

下一个定理将 Rn 的仿射子集表示为含有 n 个变量的联立线性方程组的解集。

定理1.4 给定bRm m×n 的实矩阵 B ,集合

M={xRn|Bx=b}

Rn 中的仿射集,而且每个仿射集可能用这种方式表示。

证明:如果 xM,yM,λR ,那么对 z=(1λ)x+λy ,我们有

Bz=(1λ)Bx+λBy=(1λ)b+λb=b

所以 zM ,因此给定的 M 是仿射集。

另一方面,考虑任意一个非空仿射集M而不是 Rn 本身,让 L 是平行于M的子空间,令 b1,,bm L 的一组基,那么

L=(L)={x|xb1,,xbm}={x|x,bi=0,i=1,,m}={x|Bx=0}

其中 B m×n矩阵,它的行是 b1,,bm 。因为 M 平行于L,所以存在一个 aRn 使得

M=L+a={x|B(xa)=0}={x|Bx=b}

其中 b=Ba 。(仿射集 Rn 可以用定理中的形式表示,都令 B m×n的零矩阵,在 Rn 的情况下 b=0 ,在 的情况下 b0 ) ||

观察定理1.4我们还可以得出

M={x|x,bi=βi,i=1,,m}=mi=1Hi

其中 bi B 的第i行, βi b 的第i个元素,

Hi={x|x,bi=βi}

每个 Hi 都是一个超平面( bi0 ),或者空集( bi=0,βi0 ),或者 Rn ( bi=0,βi=0 )。 空集本身可能是两个不同平行超平面的交集,而 Rn 可能是 Rn 中空个超平面的交集,因此:

推论1.4.1 Rn 中每个仿射子集是有限个超平面的交集。

定理1.4中的仿射集 M 可以用向量b1,,bn(他们组成 B 的列) 表示,

M={x=(ξ1,,ξn)|ξ1b1++ξnbn=b}

很明显,任意个仿射集的交集依然是仿射集,因此,给定任意 SRn ,存在一个唯一的包含 S 的最小仿射集(即,仿射集M的交集,其满足 MS ),这个集合叫做 S 的仿射包并用aff S表示。通过证明可以得出aff  S 由所有形如 λ1x1++λmxm 的向量组成,其中 xiS,λ1++λm=1

对于 m+1 个点 b0,b1,,bm 的集合,如果aff  {b0,b1,,bm} m 维的,那么这些点就是仿射无关(affinely independent)。当然

aff{b0,b1,,bm}=L+b0

其中

L=aff{0,b1b0,,bmb0}

利用定理1.1, L 与包含b1b0,,bmb0的子空间是一样的,当且仅当这些向量是线性无关时它的维数是 m ,所以当且仅当b1b0,,bmb0线性无关时 b0,b1,,bm 是仿射无关。

所有关于线性无关的事实都可以应用到仿射无关上。例如, Rn m+1 个点仿射无关可以扩充到 n+1 个点,一个 m 维仿射集M可以表示成 m+1 个点的仿射包(将平行于 M 子空间的基相应的点进行平移)

注意,如果M=aff{b0,b1,,bm},与 M 平行的子空间L中的向量是 b1b0,,bmb0 的线性组合,因此 M 中的向量可以表示成如下形式

x=λ1(b1b0)++λm(bmb0)+b0


x=λ0b0+λ1b1++λmbm,λ0+λ1++λm=1

上面的表达式中,当且仅当 b0,b1,,bm 仿射无关时, x 的系数是唯一的。这时候,作为参数的λ0,λ1,,λm M 的重心坐标。

Rn Rm 的单值映射 T:xTx ,如果对于 Rn 中的每一个 x,y λR ,下式成立

T((1λ)x+λy)=(1λ)Tx+λTy

那么这个映射就称为仿射变换。

定理1.5 从 Rn Rm 的仿射变换就是形如 Tx=Ax+a 的映射 T ,其中A是一个线性变换并且 aRm

证明:如果 T 是仿射的,令a=T0,Ax=Txa,那么 A 是一个仿射变换,并且A0=0。类似于定理1.1,这个简单的论据说明 A 实际是线性的。

反过来,如果Tx=Ax+a,其中 A 是线性的,我们可以得出

T((1λ)x+λy)=(1λ)Ax+λAy+a=(1λ)Tx+λTy

因此 T 是仿射的。||

仿射变换的逆(如果存在的话)还是仿射的。

如果从 Rn Rm 的映射 T 是一个仿射变换,那么对于Rn中的每个仿射集 M ,像集TM={Tx|xM} Rm 中是仿射的。特别地,仿射变换保留仿射包:

aff(TS)=T(aff S)

定理1.6 令 {b0,b1,,bm} {b0,b1,,bm} Rn 中仿射无关集,那么存在一个 Rn 到自身的一一对应仿射变换 T ,使得对于i=0,,m,Tbi=bi。如果 m=n ,那么 T 是唯一的。

证明:如果需要的话,扩展给定的仿射无关集,我们可以将问题简化为m=n的情况,然后,正如线性代数中的那样,存在一个 Rn 到自身的一对一线性变换 A ,将Rn中的基 b1b0,,bnb0 变成另一组基 b1b0,,bnb0 ,这就得到了我们需要的仿射变换 Tx=Ax+a ,其中 a=b0Ab0 ||

推论 1.6.1 令 M1,M2 Rn 中任意两个维数相同的仿射集,那么存在一个 Rn 到自身的一一对应的仿射变换 T ,使得TM1=M2

证明:任何 m 维仿射集可以表示成m+1个仿射无关集的仿射包,并且在仿射变换下保留仿射包。 ||

Rn Rm 的仿射变换 T 的图像是Rn+m中的一个仿射子集,因为根据定理1.4,如果 Tx=Ax+a T 的图像由向量z=(x,y)组成,其中 xRn,yRm ,使得 Bz=b ,其中 b=a B 是从Rn+m Rm 的线性变换 (x,y)Axy

特别地,从 Rn Rm 的仿射变换 xAx 图像时包含 Rn+m 原点的仿射集,因此它是 Rn+m 的某个子空间 L (定理1.1),L的正交补如下

L={(x,y)|xRn,yRm,x=Ay}

L A 的图像。事实上,当且仅当对每个 z=(x,y),y=Ax ,下式

0=z,z=x,x+y,y

成立,那么 z=(x,y) 属于 L 。换句话说,当且仅当对于每个 xRn ,下式

0=x,x+Ax,y=x,x+x,Ay=x,x+Ay

成立, (x,y)L 。这就意味着 x+Ay=0 ,即 x=Ay

任何非平凡仿射集可以用多种方式表示成仿射变换的图像,令 M RN n 维仿射集,其中0<n<N。首先,我们可以将 M 表示成向量x=(ξ1,,ξN)的集合,并且坐标满足某个线性方程组

βi1ξ1++βiNξN=βi,i=1,,k.

根据定理1.4可知,这总是可能的。 M 的维度为n意味着系数矩阵 B=(βij) 零度为 n 并且秩为m=Nn,因此我们可以用 ξ1¯,,ξn¯ 的形式求出 ξn+1¯¯¯¯¯,,ξN¯ 的线性方程组,其中 1¯,,N¯ 1,,N 的某个排列,接下来就得到特定形式的方程组

ξn+i¯¯¯¯=αi1ξ1¯++αinξn¯+αi,i=1,,m.

再次给出了向量 x=(ξ1,,ξN) 属于 M 的充分必要条件,这个方程组称为给定仿射集的Tucker表示。它将M 表示成某个从 Rn Rm 仿射变换的图像,对于某个 M ,只有有限多个Tucker表示(最多N!个,低于 M 中向量的m 个坐标变量 ξi 可以用另外 n 个坐标向量按某种顺序进行表示)。

涉及到仿射集的定理通常可以解释成线性方程的定理,这时候,可能给出仿射集的一个Tucker表示,这种表示非常重要,例如线性不等式中的某些结论(定理22.6,22.7)和Fenchel’s对偶定理的某些应用(推论31.4.2)

当然,子空间L的Tucker表示齐次形式为

ξn+i¯¯¯¯=αi1ξ1¯++αinξn¯,i=1,,m.

给定 L 的这种表示作为线性变换的图像,那么正如上面提到的,L对应于负伴随变换的图像,因此,当且仅当

ξj¯=ξn+i¯¯¯¯α1j++ξn+m¯¯¯¯¯αmj,j=1,,n

时, x=(ξ1,,ξN) 属于 L 。这就给出了 L 的Tucker表示,因此给定一个子空间,它的Tucker表示与其正交补的Tucker表示之间有一个简单且有用的一一对应关系。

  • 7
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值