定理1 在 Rn 中,对于每个 ε>0,x∈Rn ,集合 D(x,ε) 是开的。
证明:
选择
y∈D(x,ε)
,我们必须产生一个
ε′
使得
D(y,ε′)⊂D(x,ε)
。 图1表明我们可以选择
ε′=ε−d(x,y)
,因为
d(x,y)<ε
,所以它是正值。对于这个选择(依赖于
y
),我们将说明
图1
定理2
- Rn 中有限个开子集的交是 Rn 的一个开集。
- Rn 中任意开子集的并是 Rn 的一个开集。
证明: (i) 两个开集的交为开集证明后,对于有限个交集可以写成 A1∩⋅∩An=(A1∩⋅∩An1)∩An 。
令
A,B
是开集且
C=A∩B
;如果
C=∅
,那么
C
退化为特殊情况,就是开集,因此,假设
令 ε′′ 是 ε,ε′ 中较小的那个,那么 D(x,ε′′)⊂D(x,ε) 所以 D(x,ε′′)⊂A 。 同样地, D(x,ε′′)⊂B ,所以 D(x,ε′′)⊂C
(ii)
并的证明比较容易。令
U,V,…
是开集,他们的并是
A
。 对于
定理4
集合
A⊂Rn
是闭的当且仅当
A
的所有聚点属于
证明:
首先,假设
A
是闭的,令
定理5
令
A⊂Rn
,那么
cl(A)
由
A
与
证明:
令
B
是
定理6
令
A⊂Rn
,那么
x∈bd(A)
当且仅当对于每个
ε>0
,
D(x,ε)
包含
A
与
定理7
Rn
中的一个序列
xk
收敛到
x∈Rn
当且仅当对于每个
ε>0
,存在一个
N
使得
证明:
假设
xk→x
并且
ε>0
,因为
D(x,ε)
是开的,那么有整数
N
使得
定理8 xk→x 当且仅当 xk 的每个元素收敛到 x 的每个元素。
这样的话 k≥N 也意味着 |x1k−x1|<ε ,所以 x1k→x1 ,同样地可得 xik→xi 。
反过来假设对所有的
i,xik→xi
,那么给定
ε>0
,选择一个
N
使得
所以 xk→x 。 ||
定理9
- 集合 A⊂Rn 是闭的,当且仅当所有收敛序列 xk∈A ,极限值都在 A 中。
- 对于集合
B⊂Rn,x∈cl(B) 当且仅当存在一个序列 xk∈B 满足 xk→x 。
证明:
(i)
首先,假定
A
是闭的。假设
反过来,我们利用定理4说明
A
是闭的。令
定理10 Rn 中的序列 xk 收敛到 Rn 中的一点,当且仅当它是柯西序列。
证明:
如果
xk
收敛到
x
,那么对
反过来,假设
xk
是柯西序列,那么因为
|xik−xil|≤∥xk−xl∥
,序列中的元素也是实轴上面的柯西序列。利用
R
的完备性以及定理3,
图2