漫步数学分析番外二(上)

1 Rn 中,对于每个 ε>0,xRn ,集合 D(x,ε) 是开的。

选择 yD(x,ε) ,我们必须产生一个 ε 使得 D(y,ε)D(x,ε) 。 图1表明我们可以选择 ε=εd(x,y) ,因为 d(x,y)<ε ,所以它是正值。对于这个选择(依赖于 y ),我们将说明D(y,ε)D(x,ε),令 zD(y,ε) ,所以 d(z,y)<ε ,我们需要说明 d(z,x)<ε 。但是根据三角不等式, d(z,x)d(z,y)+d(y,x)<ε+d(y,x) 因为我们选择的 ε 满足 ε=d(y,x)=ε ,所以得证。 ||


这里写图片描述
图1

2

  1. Rn 中有限个开子集的交是 Rn 的一个开集。
  2. Rn 中任意开子集的并是 Rn 的一个开集。

(i) 两个开集的交为开集证明后,对于有限个交集可以写成 A1An=(A1An1)An

A,B 是开集且 C=AB ;如果 C= ,那么 C 退化为特殊情况,就是开集,因此,假设xC,因为 A,B 是开集,所以存在 ε,ε>0 使得

D(x,ε)AandD(x,ε)B

ε′′ ε,ε 中较小的那个,那么 D(x,ε′′)D(x,ε) 所以 D(x,ε′′)A 。 同样地, D(x,ε′′)B ,所以 D(x,ε′′)C

(ii) 并的证明比较容易。令 U,V, 是开集,他们的并是 A 。 对于xA,那么存在一个 U 使得xU,因此由于 U 是开集,所以存在ε>0使得 D(x,ε)UA ,这就证明了 A 是开集。||

4 集合 ARn 是闭的当且仅当 A 的所有聚点属于A

首先,假设 A 是闭的,令xRn是一个聚点且 xA ,集合 U=RnA ,即 A 的补集。根据定义,U是包含 x 的开集,所以是x的一个邻域;但是 UA= ,与事实 x 是聚点矛盾。反过来,假设A包含所有的聚点,令 U=RnA A 的补集,我们需要说明U是开集。令 xU ,因为 x 不是A 的聚点,所以存在 ε>0 使得 D(x,ε)A= ,因此 D(x,ε)U ,根据定义可得 U 是开集。||

5 ARn ,那么 cl(A) A A的所有聚点组成。

B A A 所有聚点组成的集合,根据定理4可知任何包含A的闭集必然包含 B ,所以证明B为闭集后,它将是包含 A 的最小闭集。令x B 的聚点,我们想说明xB。假设 xA (或者 xB ),接下来将说明 x A的一个聚点,这样的话就完成了证明(由定理4可知它是闭集)。令 U 是包含x的开集,根据定义存在 yUB ,那么要么 yA ,要么 y A的一个聚点。对于后一种情况,存在 zUA 。 对于任何情况, U 包含A中的某个元素(因为 xA ,所以不同于 x ),所以x A 的一个聚点。||

6 ARn ,那么 xbd(A) 当且仅当对于每个 ε>0 D(x,ε) 包含 A RnA中的点(这些点可能由 x 本身组成)。

xbd(A)=cl(A)cl(RnA) ,接下来,要么 xA 要么 xRnA ,如果 xA ,根据定理5, x RnA的一个聚点,结论成立。对于 xRnA 的情况情况类似。 ||

7 Rn 中的一个序列 xk 收敛到 xRn 当且仅当对于每个 ε>0 ,存在一个 N 使得nN xxn<ε

假设 xkx 并且 ε>0 ,因为 D(x,ε) 是开的,那么有整数 N 使得kN xkD(x,ε) 或者 d(x,xk)=xxkε 。反过来,假设条件成立且 U x 的一个邻域,可以找到 ε>0 使得 D(x,ε)U ,那么有一个 N 使得kN xkx<ε ,即 xkD(x,ε)U ||

8 xkx 当且仅当 xk 的每个元素收敛到 x 的每个元素。

xk=(x1k,,xnk) (我们对每个元素加上上标避免与 k 混淆)。假设xkx=(x1,,xn),那么给定 ε>0 ,选择 N 使得kN xkx<ε ,但是

|x1kx1|xkx=(i=1n(xikxi)2)1/2

这样的话 kN 也意味着 |x1kx1|<ε ,所以 x1kx1 ,同样地可得 xikxi

反过来假设对所有的 i,xikxi ,那么给定 ε>0 ,选择一个 N 使得kN且对所有的 i=1,,n 时(其中 N 是所有i中满足要求的最大值)不等式 |xikxi|<ε/sqrtn 成立,那么对于 kN ,下式成立

xkx=(i=1n(xikxi)2)1/2<(i=1nε2n)1/2=ε

所以 xkx ||

9

  1. 集合 ARn 是闭的,当且仅当所有收敛序列 xkA ,极限值都在 A 中。
  2. 对于集合BRn,xcl(B)当且仅当存在一个序列 xkB 满足 xkx

(i) 首先,假定 A 是闭的。假设xkx xA ,那么 x A的一个聚点,因为任何 x 的邻域在k足够大时包含 xkA ,因此由定理4可知 xA

反过来,我们利用定理4说明 A 是闭的。令x A 的一个聚点并且选择xkD(x,1/k)A,那么 xkx ,因为对于任意 ε>0 ,我们可以选择 N1/ε ;然后 kN xkD(x,ε) ;如图2。因此,根据假设可知 xA ,所以 A 是闭的。

(ii) 和上面的类似。

10 Rn 中的序列 xk 收敛到 Rn 中的一点,当且仅当它是柯西序列。

如果 xk 收敛到 x ,那么对ε>0,选择一个 N 值使得kN xkx<ε/2 ,那么对 k,lN ,利用三角不等式可得 xkxl=(xkx)+(xxi)xkx+xxi<ε/2+ε/2=ε

反过来,假设 xk 是柯西序列,那么因为 |xikxil|xkxl ,序列中的元素也是实轴上面的柯西序列。利用 R 的完备性以及定理3,xik收敛到 xi ,那么根据定理8可知 xk 收敛到 x=(x1,,xn) ||


这里写图片描述
图2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值