漫步数学分析二十五——等连续函数

4 B(A,Rm) ,我们称 B 是函数的等连续(equicontinuous)集合,如果对于每个ε>0,存在 δ>0 使得如果 x,yA ,那么 d(x,y)<δ 意味着对所有的 fB,d(f(x),f(y))<ε

这个定义与一致连续是一样的,除了 δ 的选择不仅要与 x0 无关,还与 f 无关。

9 ARn 是紧集并且 B(A,Rm) 。如果 B 是有界的且等连续,那么B中的任何序列有一个一致收敛的子序列。

因此对于 (A,Rm) 中的集合,如果它是闭,有界且等连续,那么该集合就是紧集。这个结论不太直观但是对连续函数空间 的分析来说确实非常基础的。

1 fn:[0,1]R 是连续的, |fn(x)|100 ,导数 fn 存在且在 (0,1) 上是一致有界的。证明 fn 有一个一致收敛的子序列。

我们验证 {fn} 是等连续的且有界,假设是存在一个常数 M 使得|fn(x)|M,所以根据均值定理,

|fn(x)fn(y)|M|xy|

给定 ε ,我们可以选择 δ=ε/M ,与 x,y,n 都无关,因此 {fn} 是等价连续的,因为 fn=sup0x1|fn(x)|100 ,所以它是有界的。

2 如果我们去掉例1中 |fn(x)| 是有界的,那么结果还成立吗?

不成立。因为令 fn(x)=n ,那么 fn=0 但是很明显它没有收敛子序列。

3 I:([0,1],R)R 定义为 I(f)=10f(x)dx ,证明 I 是连续的。

我们必须说明 fnf 意味着 I(fn)I(f) ,但是根据定理4立即可以得出这个结论。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值