漫步数学分析番外五(下)

接下来我们不证明定理10,而是更加一般的结论。

10 X 是一个完备度量空间,令T:XX是一个压缩映射: d(T(x),T(y))λd(x,y) ,其中 0λ<1 是一个不动的常数,那么 T 是连续的且有唯一的一个不动点。

可以立刻得出 T 是一致收敛的,因为给定ε>0,我们可以用 δ=ε/λ;d(x,y)<δ 意味着 d(T(x),T(y))<λδ=ε

x0X,x1=T(x0),x2=T(x1),,xn+1=T(xn)=Tn+1(x0) ,我们断言 xn 是一个柯西序列。注意

d(xn+1,xn)=d(T(xn),T(xn1))λd(xn,xn1)=λd(T(xn1),T(xn2))λ2d(xn1,xn2) λnd(Tx0,x0)

因此

d(xn,xn+k)d(xn,xn+1)+d(xn+1,xn+2)++d(xn+k1,xn+k)(λn+λn+1++λn+k1)d(Tx0,x0)

因为 λ<1,Σλn 是一个收敛的几何级数,所以给定 ε>0 ,存在一个 N 使得nN意味着 (λn++λn+k1)<ε/d(Tx0,x0) ,因此 nN 意味着 d(xn,xn+k)<ε ,从而我们得到一个柯西序列,根据完备性假设,存在 xX 使得 xnx

我们断言 Tx=x 。实际上, x=limnxn ,所以根据 T 的连续性可知Tx=limnT(xn),但是 Txn=xn+1 ,所以 Tx=limnxn+1=x

最后,不动点 x 是唯一的,因为假设Tx=x,Ty=y,那么

d(x,y)=d(Tx,Ty)λd(x,y)

如果 d(x,y)0 ,我们将得出 1λ ,矛盾,因此 d(x,y)=0 ,所以 x=y

11 f:[0,1]R 是连续函数且令 ε>0 ,那么存在一个多项式 p(x) 使得 pf<ε 。事实上,伯恩斯坦多项式序列

pn(x)=k=0n(nk)f(kn)xk(1x)nk

n 时,一致收敛到 f ,其中

(nk)n!k!(nk)!

表示二项式系数。

二项式定理表明

(x+y)n=k=0n(nk)xkynk(1)

方程1对 x 进行微分并乘以x

nx(x+y)n1=k=0nk(nk)xkynk(2)

同样地,在进行微分得

n(n1)x2(x+y)n2=k=0nk(k1)(nk)xkynk(3)

rk(x)=(nk)xk(1x)nk y=1x ,那么方程1,2,3可写为

k=0nrk(x)=1,k=0nkrk(x)=nx,k=0nk(k1)rk(x)=n(n1)x2

由此可得下面的等式

k=0n(knx)2rk(x)=n2x2k=0nrk(x)2nxk=0nkrk(x)+k=0nk2rk(x)=n2x22nxnx+[nx+n(n1)x2]=nx(1x)(4)

接下来选择 M 使得在[0,1] |f(x)|M 。因为 f 是一致连续的,那么对于ε>0,存在一个 δ>0 使得 |xy|<δ 意味着 |f(x)f(y)|<ε

我们想估计表达式

|f(x)pn(x)|=f(x)k=0nf(k/n)rk(x)=k=0n(f(x)f(kn))rk(x)

为此,将和分成两部分;一部分是 |knx|<δn 而另一部分是 |knx|δn 。如果 |knx|<δn ,那么 |x(k/n)|<δ ,所以 |f(x)f(k/n)|<ε ,又因为 rk(x)0 ,所以这些项的和 εΣrk(x)=ε 。第二种类型的和

2M|knx|δnrk(x)2Mn2δ2k=0n(knx)2rk(x)

根据公式4可变为

2Mx(1x)nδ2M2δ2n

(因为 x(1x)1/4 ),从而我们就证明了对于任意的 ε>0 ,存在一个 δ>0 使得

|f(x)pn(x)|<ε+M2δ2n

所以当 n 充分大时,M/(2δ2n)<ε,所以如果 nM/2δ2ε ,那么

|f(x)pn(x)|<2ε

从而 pnf 一致收敛。 ||

12 ARn 是紧集并且 BC(A,R) 满足

  1. B 是一个代数(algebra);即, f,gB,αRf+gB,fgB,αfB ;
  2. 常函数 x1 位于 B 中;
  3. B 分离点;即,对于 x,yA,xy ,那么存在 fB 使得 f(x)f(y)

那么 B C(A,R) 中是稠密的;即, cl(B)=C(A,R)

我们首先引入一些概念:

(fg)(x)=max(f(x),g(x))(fg)(x)=min(f(x),g(x))

(如图 ??? 所示)令 B¯ B 的闭包,那么根据加法与乘法的连续性,我们可以看出 B¯ 也满足 (i) ,很明显它满足 (ii),(iii) ,所以 B¯ 是闭的,接下来我们说明 B¯=C(A,R)

根据前面的定理我们可以找到一个多项式 pn(t) 序列使得

||t|pn(t)|<1nntn

从而

||f(x)|pn(f(x))|<1nnf(x)n

这就证明了对于 fB¯,|f|B¯

接下来我们利用等式

fg=f+g2+|fg|2fg=f+g2|fg|2

所以如果 f,gB¯ ,那么 fg,fg 也位于 B¯


这里写图片描述
图1

hC(A,R),x1,x2A,x1x2 。选择 gB 使得 g(x1)=g(x2) (根据假设 (iii) 可知该式成立),令
fx1x2(x)=αg(x)+β

其中

α=[h(x1)h(x2)][g(x1)g(x2)]β=[g(x1)h(x2)h(x1)g(x2)][g(x1)g(x2)]

α,β 的选取使得 fx1x2(x1)=h(x1),fx1x2(x2)=h(x2)

ε>0,xA ,对于 yA 存在一个 y 的邻域U(y)使得

fyx(z)>h(z)εzU(y)

这由 h 的连续性可得。令U(y1),,U(yl) A 的一个有限子覆盖,根据海涅-博雷尔定理可知这是存在的。令fx=fy1xfylx,从而 fxB¯ 且对于所有的 zA,fx(z)>h(z)ε 。另外 fx(x)=h(x) ,因此存在一个邻域 V(x) 使得如果 yV(x) ,那么 fx(y)<h(y)+ε ,令 V(x1),,V(xk) 覆盖 A 且令

f=fx1fxk

那么在此得出 fB¯ 。接下里因为对所有的 uA,fxj(u)>h(u)ε 并且对于 yA ,存在某个 xj 使得 yV(xj) ,所以 f(y)fxj(y)<h(y)+ε ,从而 |f(z)h(z)|<ε ,所以 hB¯ ,故 B¯=C(A,R) ||

下面的定理13与14都用到阿贝尔部分求和公式;下面的用到了这个公式。

1 考虑两个实数序列 a1,a2,,b1,b2, ,令 sn=a1++an ,那么

k=1nakbk=snbn+1k=1nsk(bk+1bk)=snb1+k=1n(snsk)(bk+1bk)

注意 an=snsn1 ,那么

k=1nakbk=k=1n(sksk1bk)=k=1nskbkk=1nsk1bk

其中 s0=0 ,接下来

k=1nsk1bk=k=1nskbk+1snbn+1

所以我们得到第一个结果。将

bn+1=k=1n(bk+1bk)+b1

代入第一个等式即可得出第二个等式。 ||

13 (阿贝尔测试) 令 ARm,φn:AR 是递减的函数序列;即对每个 xA,φn+1(x)φn(x) 。假设有一个常数 M 使得对所有的xA,n,不等式 |φn(x)|M 成立,如果 Σn=1fn(x) A 上一致收敛,那么Σn=1φn(x)fn(x)也一致收敛。


sn(x)=k=1nfk(x)rn(x)=k=1nφn(x)fk(x)

那么根据引理的第二个等式,我们可以找出 n>m

rn(x)rm(x)=(sn(x)sm(x))φ1(x)+k=m+1n(sn(x)sk(x))(φk+1(x)φ(x))

使得

|rn(x)rm(x)||sn(x)sm(x)||φ1(x)|+k=m+1n|snsk||φk+1(x)φk(x)|

另外

φk+1φk,|φk+1φk|=φkφk+1

给定 ε>0 ,选择 N 使得n,mN意味着对所有的 xA ,不等式 |sn(x)sm(x)|<ε/3M 成立,那么对于所有的 xA

|rn(x)rm(x)|<ε3+(ε3M)k=m+1n[φk(x)φk+1(x)]=ε3+(ε3M)[φm+1(x)φn+1(x)]ε3+(ε3M)[|φm+1(x)|+|φn+1(x)|]ε3+ε3+ε3=ε

从而根据柯西判别准则可知, fn(x) 一致收敛。 ||

14 (狄利克雷测试) 对序列 fn:ARmR ,令 sn(x)=Σnm=1fm(x) ,假设有一个常数 M 使得对所有的xA,n,不等式 |sn(x)|M 成立,令 gn:ARmR gn0 (一致), gn0,gn+1gn(x) ,那么 Σn=1fn(x)gn(x) A 上一致收敛。

我们依然用上面证明的符号, φn=gn 。那么为了计算 rnrm 我们利用引理的第一个等式,即

rn(x)rm(x)=sn(x)φn+1(x)sm(x)φm+1(x)k=m+1nsk(x)(φk+1(x)φk(x))

因为 φ0,φk+1φk

|rn(x)rm(x)|M(φn+1(x)+φm+1(x))+Mk=M+1n(φk(x)φk+1(x))=M(φ(x)+φm+1(x)+φm+1(x)φn+1(x))=2Mφm+1(x)

接下里,给定 ε>0 ,选择 N 使得m>N意味着对于所有的 x 不等式φm(x)<ε/2M,那么 m,nN 意味着 |rn(x)rm(x)|<ε ,证毕。 ||

15 |x|<R,Σk=0akxk 绝对收敛,对 |x|R ,级数一致收敛,其中 R<R ,如果 |x|>R ,那么级数发散。(如果 |x|=R 的话,该定理没有给出任何信息)

R<R ,选择 Rn 使得 R<Rn<R ,那么当 n 充分大时

|an|n1Rn,|an|(1Rn)n

这里如果 |x|R ,那么

|anxn|(RRn)n

因为 R/Rn<1 ,所以根据魏尔斯特拉斯M测试可知在 |x|R 园内,该级数一致绝对收敛。

另一方面,假设 Σanxn 收敛,那么 anxn0 ,所以当 n 充分大时|anxn|1,从而 n 充分大时ann|x|1,因此 R1=limsup|an|n|x|1 ,即 |x|R ||

4 幂级数的和是其收敛圆内的 C 函数,它可以逐项微分并且微分级数有相同的收敛半径。

通过逐项积分得到的级数是 Σkakxk1 ,收敛半径是 R ,其中

1/R=limsupk|ak|k

但是 kk1 ,所以

1R=limsup|ak|k=1R,R=R

从而根据定理3,微分级数在任意小的圆内一致收敛,所以它是原来级数和的导数。利用归纳法我们可以看出无限可微。 ||

16 (阿贝尔) 如果 Σk=0ak=A ,那么对于 |x|<1,Σk=0akxk 收敛且 limx1Σk=0akxk=A

通过改变 a0 ,我们可以假设 A=0 。因为 ak 是有界的(事实上 ak0 ),根据定理15可知当 |x|<1 时级数 Σakxk 在收敛半径中收敛。

Sn=Σnk=0ak ,当 n 时, Sn 是有界的,级数 ΣSkxk |x|<1 时同样收敛。接下来,因为 A=0,n Sn0 ,令 f(x)=Σk=0akxk,|x|<1 ,那么

f(x)=S0+k=1(SkSk1)xk=(1x)k=0Skxk

因为 Sn0 ,给定 ε>0 ,我们可以找到 n0 使得 n>n0 |Sn|ε ,那么
|f(x)|(1x)k=0n0Skxk+(1x)k=n0+1εxk(1x)k=0n0Skxk+(1x)εxn0+1(1x)1(1x)k=0n0Skxk+ε

于是 limsupx1|f(x)|ε 。因为 ε>0 是任意的,故
limx1f(x)=0||

17 Σk=0ak=A(C,1) 意味着 Σk=0ak=A (阿贝尔)。

跟前面类似,我们假设 A=0 Sn=Σnk=0ak,Tn=Σnk=0Sk ,那么根据假设, Tn=O(n) ,从而 Sn=TnTn1=O(n),an=SnSn1=O(n) ,那么如果 |x|<1 ,三个级数 Σakxk,ΣSkxk,ΣTkxk 均收敛。另外

f(x)=akxk=(1x)Skxk=(1x)2Tkxk

接下里,因为 Tn=O(n) ,那么给定 ε>0 ,我们可以选择 n0 使得 nn0 意味着 |Tn|εn ,那么
|f(x)|(x)2kn0Tkxk+(1x)2k>n0εkxk(x)2kn0Tkxk+(1x)2εx(1x)2

我们找出 limx1sup|f(x)|ε 。从而就像前面的定理那样, limx1=0 ||

18 如果 Σan=A(C,1),an=O(1/n) (即,对于常数 M 以及充分大的n,|an|M/n),那么 Σan 在一般意义下收敛(到 A )。

与平常一样,假设 A=0,Sn=Σn1ak,Tn=Σn1Sk ,那么第一个假设可以写成 Tn=o(n) ,第二个假设意味着存在一个常数 C 使得对所有的n,|an|C/n

我们想要说明 Sn0 ,如果这个结论不成立,那么存在某个 δ>0 使得对无限多个 n 不等式|Sn|δ成立。但是如果 Snδ,r>S ,我们将得到

Sr=Sn+an+1+an+2++arδC(1n+1++1r)δClog(rn)

Clog(rn)δ/2 的时候,即 r/neδ/2C=λ ,上式将 δ/2 ,从而
([λn]n)δ2r=n+1[λv]Sr=T[λn]Tn

(这里 [x] 意味着 x 的最大整数)那么不等式右边就是 o(n) ,但是左边是 (λ1)δn/2 ,推出矛盾,从而 Sn 必须趋向于0。 ||

1 (i) 如果 fkf (逐点), gkg (逐点),那么说明对函数 f,g:ARnRm,fk+gkf+g (逐点)。

(ii) 考虑一致收敛的情况。

(i) 对于 xA ,我们必须说明 (fk+gk)(x)(f+g)(x) 。给定 ε>0 ,选择 N1 使得 kN1 意味着 fk(x)f(x)ε/2 N2 使得 kN2 意味着 gk(x)g(x)<ε/2 ,那么令 N=max{(N1,N2)} ,这样的话 kN 意味着(三角不等式)

(fk+gk)(x)(f+g)(x)fk(x)f(x)+gk(x)g(x)<ε

(ii) (i) 类似,不过需改成对所有的 xA 均成立。

2 证明序列 fk:ARn 逐点(一致)收敛当且仅当每个元素逐点(一致)收敛。

逐点收敛可从下面事实得出: Rm 中的序列收敛当且仅当它的元素也收敛。然而再次写出论据后可以看出一致收敛以成立。

x=(x1,,xm)Rm ,那么 |xi|xΣmi=1|x| ,第一个不等式显然成立而第二个利用了三角不等式,这时我们将 x 写成x=(x1,0,,0)+(0,x2,0,,0)++(0,0,,xm)

fk=(f1k,,fmk) 上应用三角不等式得

|fik(x)fi(x)|fk(x)f(x)i=1m|fik(x)fi(x)|

接下来如果对所有的 x,fk(x) 是一个柯西序列,那么根据第一个不等式可知 fik(x) 都是,从而 fk 逐点收敛意味着 fik 逐点收敛,依然利用该不等式以及定理2表明如果 fk 一致收敛,那么 fik 一致收敛。

反过来,假设 fik(x) 对每个 i,x 均收敛,选择 Ni 使得 k,lNi 意味着 |fik(x)fil(x)|<ε/m ,那么如果 N=max(N1,,Nm),k,lN 意味着 fk(x)fl(x)<ε/m++ε/m=ε ,所以 fk(x) 收敛。

对于一致收敛,证明过程与上面类似,只需要改成对所有的 xA 均成立即可。

3 找出一个序列 fk ,它在 [0,) 上一致收敛到零,每个 0fk(x)dx 存在(即收敛),但是 0fk(x)+ 。这与定理4矛盾吗?


fk(x)={1k,0,0xk2x>k2

那么 fk0 是一致的,因为对于所有的 x,|fk(x)|1/k 。然而

0fk(x)dx=k2k=k

可是这与定理4并不矛盾,因为该定理处理的是有限区间。

4 (狄尼(Dini)定理)令 ARn 是紧集, fk 是连续函数 fk:AR 序列且满足

  1. 对所有的 xA,fk(x)>0
  2. fk0 逐点收敛
  3. kl fk(x)fl(x)
    证明 fk0 一致收敛。

这个例子需要非常小心,因为我们是试着从逐点收敛外加一些假设来推断一致收敛,在没有这些假设时我们很清楚的知道这肯定不为正。

给定 ε>0 ,我们想找到 N 使得对所有的kN,xA不等式 |fk(x)|<ε 成立。对于每个 xA 找到一个 Nx 使得 kNx |fx(x)|<ε/2 ,我们写成 Nx 是为了强调这个数与 x 有关。现在我们利用假设(b),利用 fk(x) 的连续性,存在 x 的邻域Ux,k使得 yUx,k |fk(y)fk(x)|<ε/2 。邻域 Ux,Nx 组成了 x 的一个覆盖,所以利用紧性存在一个有限子覆盖,假设中心在x1,,xM,令 N=max(Nx1,,NxM) ,接下来令 xA,kN ,那么存在 l 使得xUxl,Nl,所以 |fNl(x)fNl(xl)|<ε/2 ,那么利用 (c)

0fk(x)fN(x)fNl(x)=fNl(xl)+[fNl(x)fNl(xl)]<ε2+ε2=ε

因此当 kN,xA fk(x)<ε ,所以得出一致收敛。

5 考虑收敛的交错级数 Σn=1(1)n/n ,可是我们不能重新排列该级数,否则的话我们会得出收敛。事实上,级数 Σ(1)n/n 可以通过重新排列产生任何我们想要的和!这个结论是由黎曼发现的。

为了能够重排级数,我们需要绝对收敛这个性质。首先,我们定义什么是重排列。令 Σi=1ai 是一个级数,那么重排列就是级数 Σi=1aσ(i) ,其中 σ {1,2,3,} 的一个排列,或者准确地说是一个双射 σ:{1,2,3,}{1,2,3,}

证明下面的定理。

gkRm ,假设 Σk=1gk 绝对收敛;即 Σk=1gk 收敛。那么级数 Σk=1gk 的重排列也绝对收敛且有相同的极限。

gσk 是重排列级数。给定 ε>0 ,存在 N 使得nN意味着

gn++gn+p<ε

接下来选择一个整数 N1 使得 n>N1 σ(n)>N 。(因为只有有限多个 n 满足σ(n)N,所以这是成立的)那么如果 n>N1 ,我们有 σ(n+k)>N ,所以

gσ(n)++gσ(n+p)<ε

根据柯西收敛准则, Σgσ(n) 绝对收敛。

为了说明极限是一致的,给定 ε ,选择 N2>N ,其中 N 与上面讨论的一致,这样的话如果1nN,那么存在 k,1kN2 使得 n=σ(k) ,那么令 N0=max(N1,N2) 并且对 m>N0

k=1mgσ(k)n=1gn=k=1mgσ(k)n=1N0gnn=N0+1gnk=1mgσ(k)n=1N0gn+n=N0+1gn=n=N0+1mgσ(n)+n=N0+1gn<ε+ε=2ε

这里我们使用了事实

n=1gn=n=1N0gn+n=N0+1gn

以及

n=1gσ(k)n=1N0gn=n=N0+1gσ(n)

所以级数 Σmk=1gσ(k) 收敛到 Σn=0gn ,这就是想要的结论。这个例子的结论与重级数(double series)的重排列理论密切相关。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值