漫步数学分析番外五(上)

1 fk:ARm 是连续函数并且假设 fkf (一致),那么 f 是连续的。

因为 fnf 一致收敛,所以给定 ε>0 ,我们可以扎到 N 使得kN意味着对所有的 xA 不等式 fk(x)f(x)<ε/3 成立。考虑一个点 x0A ,因为 fN 是连续的,所以存在 δ>0 使得 (xx0<δ,xA)(fN(x)fN(x0)<ε/3) ,那么碎玉 xx0<δ,f(x)f(x0)f(x)fN(x)+fN(x)fN(x0)+fN(x0)f(x0)<ε/3+ε/3+ε/3=ε 。 因为 x0 是任意的,所以 f A中的每个点处都连续,故它是连续的。 ||

2 fk:ARm 是一个函数序列,那么 fk 一致收敛,当且仅当对每个 ε>0 ,存在一个 N 使得l,kN时,对所有的 xA ,不等式 fk(x)fl(x)<ε

如果 fkf 一致收敛,那么给定 ε>0 ,我们可以找出 N 使得kN意味着对所有的 x 不等式fk(x)f(x)<ε/2 成立,那么如果 k,lN ,那么 fk(x)fl(x)fk(x)f(x)+f(x)fl(x)<ε/2+ε/2=ε

反过来,如果给定 ε>0 ,我们可以找到 N 使得k,lN意味着对于所有的 x 不等式fk(x)fl(x)<ε成立,那么 fk(x) 在每个点 x 处都是柯西序列,所以fk(x)逐点收敛到,我们表示成 f(x) ,再者,我们可以找到 N 使得k,lN意味着对所有的 x 不等式fk(x)fl(x)<ε/2,因为对于每个点 x,fk(x)f(x) ,所以我们能够对每个点 x 找出Nx使得 lNxfl(x)f(x)<ε/2 ,令 lmax{N,Nx} ,那么 kNfk(x)f(x)fk(x)fl(x)+fl(x)f(x)<ε/2+ε/2=ε 。 因为这个结论对每个点 x 都成立,所以我们可以找出N使得对所有的 x,kNfk(x)f(x)<ε ,因此 fkf (一致)。 ||

3 假设 gk:ARm 这样的函数,存在常数 Mk 使得对所有的 xA,gk(x)Mk ,并且 Σk=1Mk 收敛。那么 Σk=1gk 一致收敛(并且绝对收敛)。

因为 ΣMk 收敛,所以对每个 ε>0 ,存在一个 N 使得kN意味着对所有的 p=1,2, 不等式 |Mk++Mk+p|<ε 成立。对 kN 我们由三角不等式可得

gk(x)++gk+p(x)gk(x)++gk+p(x)Mk++Mk+p<ε

对所有的 xA 都成立,所以根据级数的柯西判别准则, Σgk 一致收敛。 ||

4 假设 fk:[a,b]R 是连续函数( a,bR )并且 fkf (一致),那么

bafk(x)dxbaf(x)dx

2 假设 gk:[a,b]R 是连续的且 Σk=1gk 是一致收敛的,那么我们可以改变积分与和的次序

bak=1gk(x)dx=k=1bagk(x)dx

对于定理4,我们回顾一下,如果 |f(x)|M 那么

baf(x)dxM(ba)

对于 ε>0 选择 N 使得kN意味着 |fk(x)f(x)|<ε/(ba) ,那么

bafk(x)dxbaf(x)dx=ba(fx(x)f(x))dxε(ba)(ba)=ε

对于推论,令 fk=Σki=1gi ;那么 fkf=Σk=1gk (一致),所以根据上面的内容得

bafk(x)dxbaf(x)dx||

5 fk:(a,b)R 是开集 (a,b) 上的可微函数序列,且逐点收敛到 f:(a,b)R 。假设导数 fk 是连续的且一致收敛到函数 g ,那么f是可微的且 f=g

由微积分基本定理可知 fk(x)=fk(x0)+xx0fk(x)dt ,其中 a<x0<b 。令 k ,由定理4可得 f(x)=f(x0)+xx0g(t) ,由基本定理可知 f=g ,故根据定理1可知 g 是连续的。||

注意:即便 fk 不是连续的,该定理依然成立,只是更加复杂。

6 Cb(A,Rm) 中的函数 满足范数的性质:

  1. f0,f=0 当且仅当 f=0
  2. 对于 αR,fCb,αf=|α|f
  3. f+gf+g (三角不等式)。

(i),(ii) 很明显,对于 (iii) ,由 Rm 中的三角不等式可得

f+g=sup{(f+g)(x)|xA}sup{f(x)+g(x)|xA}

加些来,因为 sup(P+Q)=sup(P)+sup(Q) ,并且

{f(x)+g(x)|xA}{f(x)+g(y)|x,yA}

所以我们有

sup{f(x)+g(x)|xA}f+g||

7 (fkf(A))(Cbfkf;fkf0)

这只是定理的一种转录而已,证明从略。 ||

8 Cb 是一个巴拿赫空间。

fk 是一个柯西序列,根据定理2, fk 一致收敛到 f 。因为k足够大时, f(x)fk+1 ,所以 f 是有界的,根据定理1可得f是连续的,所以 fCb ,故 fk 收敛到 Cb 中。 ||

9 ARn 是紧集并且 BC(A,Rm) 。如果 B 是有界的且等连续,那么B 中的任何序列有一个一致收敛的子序列。

为了证明这个定理,我们先证明一个引理。

1 ARn 是任意集合,那么存在一个可数集合 CA ,它的闭包包含 A

Rn 中有理坐标的点是可数解和,我们成为 x1,x2, 。考虑每个整数 n 的邻域

D(x1,1n),D(x2,1n),

很明显他们覆盖 Rn 。只要 D(xl,(1/n)) A 有交点,我们就从D(xl,(1/n))A中选择一个点,通过这种方式得到的集合重新定义了我们的集合 C 。那么因为{D(xl,(1/n))|l,nN}是可数的,所以 C 是可数的。

我们断言cl(C)A。事实上,令 xA,ε>0 ,选择 n 使得1/n<ε/2。存在某个 l 使得x位于 D(xl,(1/n)) 中,所以在 CD(xl,(1/n)) 中存在一个点,我们用 y 表示,那么d(x,y)d(x,xl)+d(xl,y)1/n+1/n<ε。因此 xcl(C) ,所以 cl(C)A ||

我们将用下面的方法利用 A 的紧性。

2 A 是紧集且C按上面的方式构造,那么对任意 δ0 ,存在一个有限集合 C1C ,我们表示成 C1={y1,,yk} 使得每个 xA 位于某个 ylC1 δ 内。

选择 n 满足1/n<δ,那么根据引理1,存在有限个集合 D(x1,(1/n)) D(x2,(1/n)) ,因为 A 是紧集,所以他们覆盖A,那么 C1 定义成这些有限集中的元素,然后就像引理1那样得出结论。 ||

现在我们转向定理的证明。像引理1那样构造 C ,我们表示成C={x1,x2,},令 fn B 中的序列。那么{fn}是有界的,所以序列 fn(x1) Rm 中是有界的,由 Rm 中的波尔查诺-魏尔斯特拉斯定理可知 fn(x1) 有一个收敛的子序列,我们表示成

f11(x1),f12(x1),,f1n(x1),

同样地,序列 f1k(x2):k=1,2, Rm 中是有界的;因此它有一个收敛的子序列

f21(x2),f22(x2),,f2n(x2),

继续这个过程,序列 f2k(x3):k=1,2, Rm 中是有界,所以某个子序列

f31(x3),f32(x3),,f3n(x3),

是收敛的。我们继续用这个方式处理并令 gn=fnn 使得 gn 是第 n 个子序列的第n个函数。

从图像角度来说, gn 就是取对角线上的元素:


这里写图片描述
图1

这个技巧叫做对角线方法并且在许多情况系是非常有用的。

根据序列 gn 的构造,我们可以看出序列 gn C 的每个点都收敛;实际上gn是每个序列 fmk:k=1,2, 的子序列。

我们现在证明序列 gn A 的每个点都收敛并且还是一致收敛。为此,令ε>0,δ满足等连续的定义, C1={y1,,yk} C 的有限子集,使得A中的每个点在 C1 中某点的 δ 中。因为序列

(gn(y1)),(gn(y2)),,(gn(yk))

都收敛,所以存在一个整数 N 使得如果m,nN,那么

gm(yi)gn(yi)<εi=1,2,,k

对于每个 xA ,存在一个 yjC1 使得 xyj<δ 。 因此根据等连续的假设,对于所有的 n=1,2, ,我们有

gn(x)gn(yj)<ε

因此我们有

gn(x)gm(x)gn(x)gn(yj)+gn(yj)gm(yj)+gm(yj)gm(x)<ε+ε+ε=3ε

其中 m,nN 。这表明

gngm3εm,nN

所以由柯西判别准则可知 A 中的序列gn一致收敛。 ||

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值