漫步数学分析番外二(下)

11 Rn 中的序列 Σxk 收敛,当且仅当对每个 ε>0 ,存在一个数 N ,使得kN时,不等式 xk+xk+1++xk+p<ε 对所有整数 p=0,1,2, 成立。

sk=Σkl=1xl ,那么有定力10可知, Σxl 收敛当且仅当 sk 是柯西序列。要想这个结论成立当且仅当对每个 ε>0 ,存在一个 N 使得lN时不等式 slsl+pε 对所有 q=1,2, 成立。但是, sl+qsl=xl+1++xl+q ,所以令 k=l+1,p=q1 可得出结论。 ||

12 如果 Σxk 绝对收敛,那么 Σxk 收敛。

对定理11使用三角不等式得 xk++xk+pxk++xk+p ||

13

  1. 如果 |r|<1 ,那么级数 Σn=0rn 收敛到 1/(1r) ;如果 |r|1 ,那么该级数发散(不收敛)。
  2. 比较测试(comparison test):如果 Σk=1ak 收敛, ak0 并且 0bkak ,那么 Σk=1bk 收敛;如果 Σk=1ck 发散, ck0 ,并且 0ckdk ,那么 Σk=1dk 发散。
  3. p级数测试:如果 p>1 ,那么级数 Σn=1np 收敛;如果 p1 ,那么该级数发散到 (也就是说,部分和递增且没有边界)。
  4. 比率测试(ratio test):假设极限 limninfty|(an+1/an)| 存在并且小于1,那么级数 Σn=1an 绝对收敛;如果极限大于1,那么级数发散;如果极限等于1,那么该测试失效。
  5. 根号测试(root test):假设极限 limn(|an|)1/n 存在且小于1,那么 Σn=1an 绝对收敛;如果极限大于1,级数发散;如果级数等于1,该测试失效。
  6. 积分测试(integral test):如果 f [1,+)上的连续,非负,单调递减函数,那么 Σn=1f(n) 1f(x)dx 要么都收敛,要么都发散。

(i) 利用基本的代数运算,如果 r1 ,那么

1+r+r2++rn=1rn+11r

很明显,如果 |r|<1 ,那么当 n 时, rn+10 ,如果 |r|>1 ,那么 |r|n+1 ,所以如果 |r|<1 可知级数收敛而 |r|>1 时级数发散。显然,如果 |r|=1 ,因为 rn 不会趋向于0,所以级数 Σn=1rn 发散。

(ii) 级数 Σk=1ak 的部分和形成一个柯西序列,那么级数 Σk=1bk 的部分和也形成一个柯西序列,因为对于任意的 k,p ,我们有 bk+bk+1++bk+pak+ak+1++ak+p 。因此 Σk=1bk 收敛。一个正级数只可能发散到 + ,所以给定 M>0 ,我们可以找出 k0 ,使得 kk0 c1+c2++ckM ,因此,对于 kk0 d1+d2++dkM ,所以 Σk=1dk 也发散到 ||

(iii) 首先假设 p1 ;在这种情况下对于所有的 n=1,2, 不等式 1/np1/n 都成立,因此由 (ii) 可知如果级数 Σn=11/n 发散的话,级数 Σn=11/np 也是发散的,如果 sk=1/1+1/2++1/k ,那么 sk 是严格递增的正实数序列,我们将 s2k 写成如下形式:

s2k=1+12+(13+14)+(15+16+17+18)++(12k1+1++12k)1+12+(14+14)+(18+18+18+18)+=1+12+(12)+(12)++(12)=1+k2

由此可得如果 k 充分大,sk就能充分大;所以 Σn=11/n 收敛。

假设 p>1 ,如果我们令

sk=11p+12p+13p++1kp

那么 sk 是正实数的递增序列,另一方面
s2k1=11p+(12p+13p)+(14p+15p+16p+17p)+(1(2k1)p++1(2k1)p)11p+22p+44p+2k1(2k1)p=11p1+12p1+14p1++1(2k1)p1<1112p1

因此由上面的值 1/(11/2p1) 可知序列 sk 是有界的;所以级数 Σn=11/np 收敛。

(iv) 假设极限 limn|an+1/an|=r<1 ,选择 r 使得 r<r<1 并且令 N 满足当nN

|an+1an|<r

那么 |aN+p|<|aN|(r)p ,考虑级数 |a1|++|aN|+|aN|r+|aN|(r)2+|aN|(r)3+cdots ,该级数收敛到
|a1|++|aN1|+|aN|1r

(ii) 可知 Σk=1|ak| 收敛。如果极限 limn|an+1/an|=r>1 ,选择 r 使得 1<r<r 且令 N 满足nN |an+1/an|>r ,因此 |aN+p|>(r)p|aN| ,所以极限 limn|aN|= ,如果和收敛的话极限必须为零。因此 Σk=1ak 发散。为了明白 limn|an+1/an|=1 时该测试方法失效,我们考虑级数 1+1+1+ 以及 p>1 时的 Σn=11/np ,这两种情况下 limn|an+1/an|=1 ,但是第一个级数发散而第二个收敛。

(v) 假设 limn(|an|)1/n=r<1 ,选择 r 使得 r<r<1 ,还有 N 使得nN |an|1/n<r ;换句话说, |an|<(r)n ,级数 |a1|+|a2|++|aN1|+(r)N+(r)N+1+ 收敛到 |a1|+|a2|++|aN1|+(r)/(1r) ,所以由 (ii) 可知, Σk=1ak 收敛。如果 limn(|an|)1/n=r>1 ,选择 1<r<r ,还有 N 使得nN |an|1/n>r ;换句话说, |an|>(r)n ,因此 limn|an|= ,所以级数 Σk=1ak 发散。

为了展示 limn(|an|)1/n=1 时该测试失效,考虑极限

limn(1n)1/n=1limn(1n2)1/n=1

(取对数,然后利用事实:当 x (logx)/x0 ),但是 Σn=11/n 发散而 Σn=11/n2 收敛。


这里写图片描述
图1

(vi) 对于该部分证明,我们利用一些积分的基本性质。图 ??? 中从 x=1 x=n+1 的矩形面积 a1,a2,,an 比曲线下面的面积要大,因此,我们有

a1+a2++ann+11f(x)dx

如果我们考虑图 ??? ,我们有
a2+a3++ann1f(x)dx

两边都加 a1 可得
a1+a2++ana1+n1f(x)dx

结合这两个结果可得
n+11f(x)dxa1+a2++ana1+n1f(x)dx

如果积分 1f(x)dx 是有限的,那么右边的不等式表明级数 Σn=1an 也是有限的;但是如果 1f(x)dx 是无限的,左边不等式表明级数也是无限的,因此,级数与积分要么一起收敛要么一起发散。 ||

1 S=(x1,x2)R2||x1|1,|x2|<1 S 是开集或是闭集或都不是?S的内部是什么?

S 不是开集,因为满足x1=1 S 中任何点都没有包含S的邻域,如图2-5所示。另一方面, S 也不是闭集,因为

R2§=(x1,x2)R2||x1|>1,|x2|1

满足 x2=1 R2§ 中任何点都不含于 R2§

或者,我们注意到序列 (0,11/n) 收敛,但是极限点 (0,1) 不在 S 中,所以S不是闭的。

int(S)=(x1,x2)R2||x1|<1,|x2|<1 ,我们通过说明这个集合的元素都是 S 的内点来验证这个结论。如果|x1|<1,|x2|<2,那么圆心为 (x1,x2) 半径为 r=min1|x1|,1|x2| 的圆位于 S 中,S中的其余点都不是内点。

当对这种类型的判断熟悉后,一些细节就可以忽略了。

2 说明如果 x 是集合SRn的聚点,那么包含 x 的每个开集包含S中无穷多个点。

我们使用反正法。假设存在一个包含 x 的开集U,它只包含有限多个 S 的点,令x1,x2,,xm 是除 x U中属于 S 的点,令ε d(x,x1) d(x,x2) d(x,xm) 中最小的值,很明显 ε>0 ,那么 D(x,ε) 除了 x 外没有任何点了,这与x S 的聚点相矛盾。

3如果对于 SR,x=sup(S) ,那么 xcl(S)

根据定理5,要么 xS ,要么 x S的聚点。根据定理2,对于任意 ε>0 ,存在 y 满足d(x,y)<ε,这意味着如果 xS ,那么 x 就是S的聚点。

4 序列最多收敛到一个点(极限是唯一的)。

xkx,xky 。给定 ε>0 ,选择 N 使得kN xkx<ε/2 ,选择 M 使得kM xky<ε/2 。那么,如果 kN,kM ,我们有 xyxxk+xky<ε (利用三角不等式)。因为对于每个 ε>0 ,不等式 0xy<ε 成立,所以 xy=0 ,即 x=y

5 如果 x 充分大时g(x)>0并且 f(x)/g(x) 是有界的,那么我们写作 f=O(g) ;如果 x 趋向+ f/g 趋向零,那么我们写作 f=o(g) 。如果 x f/g1 ,那么我们写作 fg (读作 f 渐近g)。证明下面命题:

(a) x2+x=O(x2)
(b) x2+xx2
(c) elogx=o(x)

我们注意到如果 f 渐近g,那么自然 f=O(g) ,因此(a)可由(b)导出,但是(b)很容易证明,因为当 x 趋近无穷大时,(x2+x)/x2=1+1/x趋近于1。为了证明(c),注意到 elogx=x ,所以 elogx/x=elogxlogx ,但是因为 x logx ,所以对于充分大的 x logx(logx)/2因此对于充分大的 x ,当x elogx/xe(logx)/2 趋近于零。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值