漫步数理统计十七——条件分布与期望

前面我们介绍了一对随机变量的联合概率分布,也说明了如何从联合分布中恢复出单个随机变量(边缘)的分布。现在我们讨论条件分布,即其他随机变量假设为特定值,求一个随机变量的分布,首先讨论离散情况。

X1,X2 表示离散随机变量,联合pmf为 pX1,X2(x1,x2) ,其在支撑集 S 上是正的,其他地方为零。令 pX1(x1),pX2(x2) 分别表示 X1,X2 的边缘概率密度函数, x1 X1 支撑中的点;因此 pX1(x1)>0 ,利用条件概率定义,对于 X2 支撑 SX2 中的所有 x2 ,我们有

P(X2=x1|X1=x1)=P(X1=x1,X2=x2)P(X1=x1)=pX1,X2(x1,x2)pX1(x1)

将这个函数定义为

pX2|X1(x2|x1)=pX1,X2(x1,x2)pX1(x1),x2SX2

对于任意满足 pX1(x1)>0 的固定 x1 ,函数 pX2|X1(x2|x1) 满足离散pmf的条件,因为 pX2|X1(x2|x1) 是非负的且

x2pX2|X1(x2|x1)=x2pX1,X2(x1,x2)pX1(x1)=1pX1(x1)x2pX1,X2(x1,x2)=pX1(x1)pX1(x1)=1

我们称 pX2|X1(x2|x1) 是给定离散随机变量 X1=x1 的条件下,离散随机变量 X2 的条件pmf。同样的,假设 x2SX2 ,我们将符号 pX1|X2(x1|x2) 定义为

pX1|X2(x1|x2)=pX1,X2(x1,x2)pX2(x)2),x1SX1

我们称 pX1|X2(x1|x2) 是给定离散随机变量 X2=x2 的条件下,离散随机变量 X1 的条件pmf。我们常将 pX1|X2(x1|x2) 缩写成 p1|2(x1|x2) pX2|X1(x2|x1) 缩写成 p2|1(x2|x1) ,同样的 p1(x1),p2(x2) 分别表示边缘pmf。

现在令 X1,X2 表示连续随机变量且联合pdf为 fX1,X2(x1,x2) ,边缘概率密度函数分别为 fX1(x1),fX2(x2) ,我们将使用前面的结论来推出连续随机变量的条件pdf,当 fX1(x1)>0 时,我们将符号 fX2|X1(x2|x1) 定义为

fX2|X1(x2|x1)=fX1,X2(x1,x2)fX1(x1)

在这个关系中,可将 x1 看成是满足 fX1(x1)>0 的固定值(但是是任意固定的),很明显 fX2|X1(x2|x1) 是非负的且

fX2|X1(x2|x1)dx2=fX1,X2(x1,x2)fX1(x1)dx2=1fX1(x1)fX1,X2(x1,x2)dx2=1fX1(x1)fX1(x1)=1

fX2|X1(x2|x1) 满足连续随机变量pdf的性质,我们称它为给定连续随机变量 X1 的值 x1 时,连续随机变量 X2 的条件pdf。当 fX2(x2)>0 ,给定连续随机变量 X2 的值 x2 时,连续随机变量 X1 的条件pdf定义为

fX1|X2(x1|x2)=fX1,X2(x1,x2)fX2(x2),fX2(x2)>0

我们常将这些条件pdf缩写成 f1|2(x1|x2),f2|1(x2|x1) ,同样的 f1(x1),f2(x2) 将分别表示边缘pdf。

因为 f2|1(x2|x1),f1|2(x1|x2) 是随机变量的pdf,每个都满足pdf的性质,所以我们可以计算概率以及数学期望,如果随机变量是连续形的,那么概率

P(a<X2<b|X1=x1)=baf2|1(x2|x1)dx2

称为给定 X1=x1,a<X2<b 的条件概率,在不引起歧义的情况下,我们可以写成 P(a<X2<b|x1) 。同样的,给定 X2=x2,c<X1<d 的条件概率为

P(c<X1<d|X2=x2)=dcf1|2(x1|x2)dx1

如果 u(X2) x2 的函数,那么给定 X1=x1,u(X2) 的条件期望(如果存在的话)为

E[u(X2)|x1]=u(x2)f2|1(x2|x1)dx2

特别地,如果他们存在的话,那么 E(X2|x1) E{[X2E(X2|x1)]2|x1} 分别表示给定 X1=x1 X2 条件分布的均值与方差,方差可以简写为 var(X2|x1) ,从之前的结论我们知道

var(X2|x1)=E(X22|x1)[E(X2|x1)]2

同样的,给定 X2=x2 u(X1) 的条件期望(如果存在的话)为

E[u(X1)|x2]=u(x1)f1|2(x1|x2)dx1

对于离散随机变量,只需要将积分符号变成求和符号即可,如下面例子所示。

1 X1,X2 的联合pdf为

f(x1,x2)={200<x1<x2<1elsewhere

那么边缘概率密度函数分别是

f1(x1)={1x12dx2=2(1x1)00<x1<1elsewhere


f2(x2)={x202dx1=2x200<x2<1elsewhere

给定 X2=x2,0<x2<1 X1 的条件pdf为

f1|2(x1|x2)={22x2=1x200<x1<x2elsewhere

这里给定 X2=x2 X1 的条件均值与条件期望分别为

E(X1|x2)=x1f1|2(x1|x2)dx1=x20x1(1x2)dx1=x22, 0<x2<1


var(X1|x2)=x20(x1x22)2(1x2)dx1=x2212, 0<x2<1

最后,我们将计算

P(0<X1<12|X2=34)p(0<X1<12)

的值,我们有

P(0<X1<12|X2=34)=1/20f1|2(x1|34)=1/20(43)dx1=23

但是

P(0<X1<12)=1/20f1(x1)dx1=1/202(1x1)dx1=34

因为 E(X2|X1) x1 的函数,那么 E(X2|X1) 是随机变量,其有自己分布、期望与方差,现在举例说明这种情况。

2 X1,X2 的联合pdf为

f(x1,x2)={6x200<x2<x1<1elsewhere

那么 X1 的边缘pdf为

f1(x1)=x106x2dx2=3x21, 0<x1<1

其余地方为零。给定 X1=x1 X2 的条件pdf为

f2|1(x2|x1)=6x23x21=2x2x21, 0<x2<x1

其余地方为零,其中 0<x1<1 。给定 X1=x1 X2 的条件均值为

E(X2|x1)=x10x2(2x2x21)dx2=23x1, 0<x1<1

现在 E(X2|X1)=2X1/3 是一个随机变量,用 Y 表示,那么Y=2X1/3的cdf为

G(y)=P(Yy)=P(X13y2), 0y<23

根据 f1(x1) 的pdf我们有

G(y)=3y/203x21dx1=27y38, 0y<23

当然,如果 y<0,G(y)=0 ,如果 23<y,G(y)=1 Y=2X1/3 的pdf、均值与方差为

g(y)=81y28, 0y<23

其余地方为零,

E(Y)=2/30y(81y28)dy=12


var(Y)=2/30y2(81y28)dy14=160

因为 X2 的边缘pdf为

f2(x2)=1x26x2dx1=6x2(1x2), 0<x2<1

其余地方为零,很容易说明 E(X2)=12,var(X2)=120 ,即

E(Y)=E[E(X2|X1)]=E(X2)


var(Y)=var[E(X2|X1)]var(X2)

例2是个非常好的例子,因为它让我们回顾了求随机变量函数分布的cdf方法,而且最后两个等式不是偶然的,一般情况下就是为真。

1 (X1,X2) 是随机向量,使得 X2 的方差是有限的,那么

  1. E[E(X2|X1)]=E(X2)
  2. var[E(X2|X1)]var(X2)

这里证明的是连续情况,对于离散情况只需要将积分符号换成离散符号即可。首先证明 (a) ,注意

E(X2)=x2f(x1,x2)dx2dx1=[x2f(x1,x2)f1(x1)dx2]f1(x1)dx1=E(X2|x1)f1(x1)dx1=E[E(X2|X1)]

接下里证明 (b) ,考虑 μ2=E(X2)

var(X2)=E[(X2μ2)2]=E{[X2E(X2|X1)+E(X2|X1)μ2]2}=E{[X2E(X2|X1)]2}+E{[E(X2|X1)μ2]2}+2E{[X2E(X2|X1)][E(X2|X1)μ2]}

我们接下来说明右边的最后一项等于零,

2[x2E(X2|x1)][E(X2|x1)μ2]f(x1,x2)dx2dx1=2[E(X2|x1)μ2]{[x2E(X2|x1)]f(x1,x2)f1(x1)dx2}f1(x1)dx1

但是 E(X2|x1) 是给定 X1=x1 X2 的条件均值,因为大括号中的表达式等于

E(X2|x1)E(X2|x1)=0

所以双重积分等于零,故我们有

var(X2)=E{[X2E(X2|X1)]2}+E{[E(X2|X1)μ2]2}

右边的第一项是非负的,因为它是非负函数即 [X2E(X2|X1)]2 的期望,因为 E[E(X2|X1)]=μ2 ,第二项为 var[E(X2|X1)] ,因此我们有

var(X2)var[E(X2|X1)]

得证。 ||

直观上这个结论有一个有用的解释,随机变量 X2,E(X2|X1) 均值均为 μ2 ,如果我们不知道 μ2 ,那么我们可以用这两个随机变量的任何一个来猜未知量 μ2 。然而因为 var(X2)var[E(X2|X1)] ,故我们更相信 E(X2|X1) 。即,如果我们观测到 (X1,X2) ,我们更愿意用 E(X2|x1) 来猜测未知量 μ2 ,在之后研究估计中的充分统计量时,我们会利用这个结论。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值